#!/usr/bin/env python3 # Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from itertools import islice from pathlib import Path from random import Random from typing import List, Tuple import torch # fmt: off from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527 CutSet, Fbank, FbankConfig, LilcomChunkyWriter, RecordingSet, SupervisionSet, ) # fmt: on ARGPARSE_DESCRIPTION = """ This script follows the espnet method of splitting the remaining core+noncore utterances into valid and train cutsets at an index which is by default 4000. In other words, the core+noncore utterances are shuffled, where 4000 utterances of the shuffled set go to the `valid` cutset and are not subject to speed perturbation. The remaining utterances become the `train` cutset and are speed- perturbed (0.9x, 1.0x, 1.1x). """ # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) RNG_SEED = 42 def make_cutset_blueprints( manifest_dir: Path, split: int, ) -> List[Tuple[str, CutSet]]: cut_sets = [] # Create eval datasets logging.info("Creating eval cuts.") for i in range(1, 4): cut_set = CutSet.from_manifests( recordings=RecordingSet.from_file( manifest_dir / f"csj_recordings_eval{i}.jsonl.gz" ), supervisions=SupervisionSet.from_file( manifest_dir / f"csj_supervisions_eval{i}.jsonl.gz" ), ) cut_set = cut_set.trim_to_supervisions(keep_overlapping=False) cut_sets.append((f"eval{i}", cut_set)) # Create train and valid cuts logging.info("Loading, trimming, and shuffling the remaining core+noncore cuts.") recording_set = RecordingSet.from_file( manifest_dir / "csj_recordings_core.jsonl.gz" ) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz") supervision_set = SupervisionSet.from_file( manifest_dir / "csj_supervisions_core.jsonl.gz" ) + SupervisionSet.from_file(manifest_dir / "csj_supervisions_noncore.jsonl.gz") cut_set = CutSet.from_manifests( recordings=recording_set, supervisions=supervision_set, ) cut_set = cut_set.trim_to_supervisions(keep_overlapping=False) cut_set = cut_set.shuffle(Random(RNG_SEED)) logging.info( "Creating valid and train cuts from core and noncore, split at {split}." ) valid_set = CutSet.from_cuts(islice(cut_set, 0, split)) train_set = CutSet.from_cuts(islice(cut_set, split, None)) train_set = train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1) cut_sets.extend([("valid", valid_set), ("train", train_set)]) return cut_sets def get_args(): parser = argparse.ArgumentParser( description=ARGPARSE_DESCRIPTION, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests") parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features") parser.add_argument("--split", type=int, default=4000, help="Split at this index") return parser.parse_args() def main(): args = get_args() extractor = Fbank(FbankConfig(num_mel_bins=80)) num_jobs = min(16, os.cpu_count()) formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) if (args.fbank_dir / ".done").exists(): logging.info( "Previous fbank computed for CSJ found. " f"Delete {args.fbank_dir / '.done'} to allow recomputing fbank." ) return else: cut_sets = make_cutset_blueprints(args.manifest_dir, args.split) for part, cut_set in cut_sets: logging.info(f"Processing {part}") cut_set = cut_set.compute_and_store_features( extractor=extractor, num_jobs=num_jobs, storage_path=(args.fbank_dir / f"feats_{part}").as_posix(), storage_type=LilcomChunkyWriter, ) cut_set.to_file(args.manifest_dir / f"csj_cuts_{part}.jsonl.gz") logging.info("All fbank computed for CSJ.") (args.fbank_dir / ".done").touch() if __name__ == "__main__": main()