#!/usr/bin/env python3 # Copyright 2023 The University of Electro-Communications (Author: Teo Wen Shen) # noqa # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from pathlib import Path from typing import List, Tuple import torch # fmt: off from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527 CutSet, Fbank, FbankConfig, LilcomChunkyWriter, RecordingSet, SupervisionSet, ) # fmt: on # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) RNG_SEED = 42 concat_params = {"gap": 1.0, "maxlen": 10.0} def make_cutset_blueprints( manifest_dir: Path, ) -> List[Tuple[str, CutSet]]: cut_sets = [] # Create test dataset logging.info("Creating test cuts.") cut_sets.append( ( "test", CutSet.from_manifests( recordings=RecordingSet.from_file( manifest_dir / "reazonspeech_recordings_test.jsonl.gz" ), supervisions=SupervisionSet.from_file( manifest_dir / "reazonspeech_supervisions_test.jsonl.gz" ), ), ) ) # Create dev dataset logging.info("Creating dev cuts.") cut_sets.append( ( "dev", CutSet.from_manifests( recordings=RecordingSet.from_file( manifest_dir / "reazonspeech_recordings_dev.jsonl.gz" ), supervisions=SupervisionSet.from_file( manifest_dir / "reazonspeech_supervisions_dev.jsonl.gz" ), ), ) ) # Create train dataset logging.info("Creating train cuts.") cut_sets.append( ( "train", CutSet.from_manifests( recordings=RecordingSet.from_file( manifest_dir / "reazonspeech_recordings_train.jsonl.gz" ), supervisions=SupervisionSet.from_file( manifest_dir / "reazonspeech_supervisions_train.jsonl.gz" ), ), ) ) return cut_sets def get_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("-m", "--manifest-dir", type=Path) return parser.parse_args() def main(): args = get_args() extractor = Fbank(FbankConfig(num_mel_bins=80)) num_jobs = min(16, os.cpu_count()) formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) if (args.manifest_dir / ".reazonspeech-fbank.done").exists(): logging.info( "Previous fbank computed for ReazonSpeech found. " f"Delete {args.manifest_dir / '.reazonspeech-fbank.done'} to allow recomputing fbank." ) return else: cut_sets = make_cutset_blueprints(args.manifest_dir) for part, cut_set in cut_sets: logging.info(f"Processing {part}") cut_set = cut_set.compute_and_store_features( extractor=extractor, num_jobs=num_jobs, storage_path=(args.manifest_dir / f"feats_{part}").as_posix(), storage_type=LilcomChunkyWriter, ) cut_set.to_file(args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz") logging.info("All fbank computed for ReazonSpeech.") (args.manifest_dir / ".reazonspeech-fbank.done").touch() if __name__ == "__main__": main()