#!/usr/bin/env python3 # # Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, # Zengwei Yao, # Wei Kang, # Xiaoyu Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. """ Usage: Note: This is an example for AudioSet dataset, if you are using different dataset, you should change the argument values according to your dataset. (1) Export to torchscript model using torch.jit.script() ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --epoch 30 \ --avg 9 \ --jit 1 It will generate a file `jit_script.pt` in the given `exp_dir`. You can later load it by `torch.jit.load("jit_script.pt")`. Check ./jit_pretrained.py for its usage. Check https://github.com/k2-fsa/sherpa and https://github.com/k2-fsa/sherpa-onnx for how to use the exported models outside of icefall. (2) Export `model.state_dict()` ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --epoch 30 \ --avg 9 It will generate a file `pretrained.pt` in the given `exp_dir`. You can later load it by `icefall.checkpoint.load_checkpoint()`. To use the generated file with `zipformer/evaluate.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/audioset/AT ./zipformer/evaluate.py \ --exp-dir ./zipformer/exp \ --use-averaged-model False \ --epoch 9999 \ --avg 1 \ --max-duration 600 Check ./pretrained.py for its usage. """ import argparse import logging from pathlib import Path from typing import Tuple import torch from scaling_converter import convert_scaled_to_non_scaled from torch import Tensor, nn from train import add_model_arguments, get_model, get_params from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.utils import make_pad_mask, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=9, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="zipformer/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--jit", type=str2bool, default=False, help="""True to save a model after applying torch.jit.script. It will generate a file named jit_script.pt. Check ./jit_pretrained.py for how to use it. """, ) add_model_arguments(parser) return parser class EncoderModel(nn.Module): """A wrapper for encoder and encoder_embed""" def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None: super().__init__() self.encoder = encoder self.encoder_embed = encoder_embed def forward( self, features: Tensor, feature_lengths: Tensor ) -> Tuple[Tensor, Tensor]: """ Args: features: (N, T, C) feature_lengths: (N,) """ x, x_lens = self.encoder_embed(features, feature_lengths) src_key_padding_mask = make_pad_mask(x_lens) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask) encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) return encoder_out, encoder_out_lens class Classifier(nn.Module): """A wrapper for audio tagging classifier""" def __init__(self, classifier: nn.Module) -> None: super().__init__() self.classifier = classifier def forward(self, encoder_out: Tensor, encoder_out_lens: Tensor): """ Args: encoder_out: A 3-D tensor of shape (N, T, C). encoder_out_lens: A 1-D tensor of shape (N,). It contains the number of frames in `x` before padding. """ logits = self.classifier(encoder_out) # (N, T, num_classes) padding_mask = make_pad_mask(encoder_out_lens) logits[padding_mask] = 0 logits = logits.sum(dim=1) # mask the padding frames logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as( logits ) # normalize the logits return logits @torch.no_grad() def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) device = torch.device("cpu") logging.info(f"device: {device}") logging.info(params) logging.info("About to create model") model = get_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.eval() if params.jit is True: convert_scaled_to_non_scaled(model, inplace=True) # We won't use the forward() method of the model in C++, so just ignore # it here. # Otherwise, one of its arguments is a ragged tensor and is not # torch scriptabe. model.__class__.forward = torch.jit.ignore(model.__class__.forward) model.encoder = EncoderModel(model.encoder, model.encoder_embed) model.classifier = Classifier(model.classifier) filename = "jit_script.pt" logging.info("Using torch.jit.script") model = torch.jit.script(model) model.save(str(params.exp_dir / filename)) logging.info(f"Saved to {filename}") else: logging.info("Not using torchscript. Export model.state_dict()") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "pretrained.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()