Export to ONNX ============== In this section, we describe how to export models to ONNX. .. hint:: Only non-streaming conformer transducer models are tested. When to use it -------------- It you want to use an inference framework that supports ONNX to run the pretrained model. How to export ------------- We use ``_ as an example in the following. .. code-block:: bash cd egs/librispeech/ASR epoch=14 avg=2 ./pruned_transducer_stateless3/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch $epoch \ --avg $avg \ --onnx 1 It will generate the following files inside ``pruned_transducer_stateless3/exp``: - ``encoder.onnx`` - ``decoder.onnx`` - ``joiner.onnx`` - ``joiner_encoder_proj.onnx`` - ``joiner_decoder_proj.onnx`` You can use ``./pruned_transducer_stateless3/exp/onnx_pretrained.py`` to decode waves with the generated files: .. code-block:: bash ./pruned_transducer_stateless3/onnx_pretrained.py \ --bpe-model ./data/lang_bpe_500/bpe.model \ --encoder-model-filename ./pruned_transducer_stateless3/exp/encoder.onnx \ --decoder-model-filename ./pruned_transducer_stateless3/exp/decoder.onnx \ --joiner-model-filename ./pruned_transducer_stateless3/exp/joiner.onnx \ --joiner-encoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_encoder_proj.onnx \ --joiner-decoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_decoder_proj.onnx \ /path/to/foo.wav \ /path/to/bar.wav \ /path/to/baz.wav How to use the exported model ----------------------------- We also provide ``_ performing speech recognition using `onnxruntime `_ with exported models. It has been tested on Linux, macOS, and Windows.