# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Dict, List, Optional, Union import k2 import torch from icefall.utils import add_eos, add_sos, get_texts DEFAULT_LM_SCALE = [ 0.01, 0.05, 0.08, 0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0, ] def _intersect_device( a_fsas: k2.Fsa, b_fsas: k2.Fsa, b_to_a_map: torch.Tensor, sorted_match_a: bool, batch_size: int = 50, ) -> k2.Fsa: """This is a wrapper of k2.intersect_device and its purpose is to split b_fsas into several batches and process each batch separately to avoid CUDA OOM error. The arguments and return value of this function are the same as :func:`k2.intersect_device`. """ num_fsas = b_fsas.shape[0] if num_fsas <= batch_size: return k2.intersect_device( a_fsas, b_fsas, b_to_a_map=b_to_a_map, sorted_match_a=sorted_match_a ) num_batches = (num_fsas + batch_size - 1) // batch_size splits = [] for i in range(num_batches): start = i * batch_size end = min(start + batch_size, num_fsas) splits.append((start, end)) ans = [] for start, end in splits: indexes = torch.arange(start, end).to(b_to_a_map) fsas = k2.index_fsa(b_fsas, indexes) b_to_a = k2.index_select(b_to_a_map, indexes) path_lattice = k2.intersect_device( a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a ) ans.append(path_lattice) return k2.cat(ans) def get_lattice( nnet_output: torch.Tensor, decoding_graph: k2.Fsa, supervision_segments: torch.Tensor, search_beam: float, output_beam: float, min_active_states: int, max_active_states: int, subsampling_factor: int = 1, ) -> k2.Fsa: """Get the decoding lattice from a decoding graph and neural network output. Args: nnet_output: It is the output of a neural model of shape `(N, T, C)`. decoding_graph: An Fsa, the decoding graph. It can be either an HLG (see `compile_HLG.py`) or an H (see `k2.ctc_topo`). supervision_segments: A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns. Each row contains information for a supervision segment. Column 0 is the `sequence_index` indicating which sequence this segment comes from; column 1 specifies the `start_frame` of this segment within the sequence; column 2 contains the `duration` of this segment. search_beam: Decoding beam, e.g. 20. Smaller is faster, larger is more exact (less pruning). This is the default value; it may be modified by `min_active_states` and `max_active_states`. output_beam: Beam to prune output, similar to lattice-beam in Kaldi. Relative to best path of output. min_active_states: Minimum number of FSA states that are allowed to be active on any given frame for any given intersection/composition task. This is advisory, in that it will try not to have fewer than this number active. Set it to zero if there is no constraint. max_active_states: Maximum number of FSA states that are allowed to be active on any given frame for any given intersection/composition task. This is advisory, in that it will try not to exceed that but may not always succeed. You can use a very large number if no constraint is needed. subsampling_factor: The subsampling factor of the model. Returns: An FsaVec containing the decoding result. It has axes [utt][state][arc]. """ dense_fsa_vec = k2.DenseFsaVec( nnet_output, supervision_segments, allow_truncate=subsampling_factor - 1, ) lattice = k2.intersect_dense_pruned( decoding_graph, dense_fsa_vec, search_beam=search_beam, output_beam=output_beam, min_active_states=min_active_states, max_active_states=max_active_states, ) return lattice class Nbest(object): """ An Nbest object contains two fields: (1) fsa. It is an FsaVec containing a vector of **linear** FSAs. Its axes are [path][state][arc] (2) shape. Its type is :class:`k2.RaggedShape`. Its axes are [utt][path] The field `shape` has two axes [utt][path]. `shape.dim0` contains the number of utterances, which is also the number of rows in the supervision_segments. `shape.tot_size(1)` contains the number of paths, which is also the number of FSAs in `fsa`. Caution: Don't be confused by the name `Nbest`. The best in the name `Nbest` has nothing to do with `best scores`. The important part is `N` in `Nbest`, not `best`. """ def __init__(self, fsa: k2.Fsa, shape: k2.RaggedShape) -> None: """ Args: fsa: An FsaVec with axes [path][state][arc]. It is expected to contain a list of **linear** FSAs. shape: A ragged shape with two axes [utt][path]. """ assert len(fsa.shape) == 3, f"fsa.shape: {fsa.shape}" assert shape.num_axes == 2, f"num_axes: {shape.num_axes}" if fsa.shape[0] != shape.tot_size(1): raise ValueError( f"{fsa.shape[0]} vs {shape.tot_size(1)}\n" "Number of FSAs in `fsa` does not match the given shape" ) self.fsa = fsa self.shape = shape def __str__(self): s = "Nbest(" s += f"Number of utterances:{self.shape.dim0}, " s += f"Number of Paths:{self.fsa.shape[0]})" return s @staticmethod def from_lattice( lattice: k2.Fsa, num_paths: int, use_double_scores: bool = True, nbest_scale: float = 0.5, ) -> "Nbest": """Construct an Nbest object by **sampling** `num_paths` from a lattice. Each sampled path is a linear FSA. We assume `lattice.labels` contains token IDs and `lattice.aux_labels` contains word IDs. Args: lattice: An FsaVec with axes [utt][state][arc]. num_paths: Number of paths to **sample** from the lattice using :func:`k2.random_paths`. use_double_scores: True to use double precision in :func:`k2.random_paths`. False to use single precision. scale: Scale `lattice.score` before passing it to :func:`k2.random_paths`. A smaller value leads to more unique paths at the risk of being not to sample the path with the best score. Returns: Return an Nbest instance. """ saved_scores = lattice.scores.clone() lattice.scores *= nbest_scale # path is a ragged tensor with dtype torch.int32. # It has three axes [utt][path][arc_pos] path = k2.random_paths( lattice, num_paths=num_paths, use_double_scores=use_double_scores ) lattice.scores = saved_scores # word_seq is a k2.RaggedTensor sharing the same shape as `path` # but it contains word IDs. Note that it also contains 0s and -1s. # The last entry in each sublist is -1. # It axes is [utt][path][word_id] if isinstance(lattice.aux_labels, torch.Tensor): word_seq = k2.ragged.index(lattice.aux_labels, path) else: word_seq = lattice.aux_labels.index(path) word_seq = word_seq.remove_axis(word_seq.num_axes - 2) word_seq = word_seq.remove_values_leq(0) # Each utterance has `num_paths` paths but some of them transduces # to the same word sequence, so we need to remove repeated word # sequences within an utterance. After removing repeats, each utterance # contains different number of paths # # `new2old` is a 1-D torch.Tensor mapping from the output path index # to the input path index. _, _, new2old = word_seq.unique( need_num_repeats=False, need_new2old_indexes=True ) # kept_path is a ragged tensor with dtype torch.int32. # It has axes [utt][path][arc_pos] kept_path, _ = path.index(new2old, axis=1, need_value_indexes=False) # utt_to_path_shape has axes [utt][path] utt_to_path_shape = kept_path.shape.get_layer(0) # Remove the utterance axis. # Now kept_path has only two axes [path][arc_pos] kept_path = kept_path.remove_axis(0) # labels is a ragged tensor with 2 axes [path][token_id] # Note that it contains -1s. labels = k2.ragged.index(lattice.labels.contiguous(), kept_path) # Remove -1 from labels as we will use it to construct a linear FSA labels = labels.remove_values_eq(-1) if isinstance(lattice.aux_labels, k2.RaggedTensor): # lattice.aux_labels is a ragged tensor with dtype torch.int32. # It has 2 axes [arc][word], so aux_labels is also a ragged tensor # with 2 axes [arc][word] aux_labels, _ = lattice.aux_labels.index( indexes=kept_path.values, axis=0, need_value_indexes=False ) else: assert isinstance(lattice.aux_labels, torch.Tensor) aux_labels = k2.index_select(lattice.aux_labels, kept_path.values) # aux_labels is a 1-D torch.Tensor. It also contains -1 and 0. fsa = k2.linear_fsa(labels) fsa.aux_labels = aux_labels # Caution: fsa.scores are all 0s. # `fsa` has only one extra attribute: aux_labels. return Nbest(fsa=fsa, shape=utt_to_path_shape) def intersect(self, lattice: k2.Fsa, use_double_scores=True) -> "Nbest": """Intersect this Nbest object with a lattice, get 1-best path from the resulting FsaVec, and return a new Nbest object. The purpose of this function is to attach scores to an Nbest. Args: lattice: An FsaVec with axes [utt][state][arc]. If it has `aux_labels`, then we assume its `labels` are token IDs and `aux_labels` are word IDs. If it has only `labels`, we assume its `labels` are word IDs. use_double_scores: True to use double precision when computing shortest path. False to use single precision. Returns: Return a new Nbest. This new Nbest shares the same shape with `self`, while its `fsa` is the 1-best path from intersecting `self.fsa` and `lattice`. Also, its `fsa` has non-zero scores and inherits attributes for `lattice`. """ # Note: We view each linear FSA as a word sequence # and we use the passed lattice to give each word sequence a score. # # We are not viewing each linear FSAs as a token sequence. # # So we use k2.invert() here. # We use a word fsa to intersect with k2.invert(lattice) word_fsa = k2.invert(self.fsa) word_fsa.scores.zero_() if hasattr(lattice, "aux_labels"): # delete token IDs as it is not needed del word_fsa.aux_labels word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa) else: word_fsa_with_epsilon_loops = k2.linear_fst_with_self_loops(word_fsa) path_to_utt_map = self.shape.row_ids(1) if hasattr(lattice, "aux_labels"): # lattice has token IDs as labels and word IDs as aux_labels. # inv_lattice has word IDs as labels and token IDs as aux_labels inv_lattice = k2.invert(lattice) inv_lattice = k2.arc_sort(inv_lattice) else: inv_lattice = k2.arc_sort(lattice) if inv_lattice.shape[0] == 1: path_lattice = _intersect_device( inv_lattice, word_fsa_with_epsilon_loops, b_to_a_map=torch.zeros_like(path_to_utt_map), sorted_match_a=True, ) else: path_lattice = _intersect_device( inv_lattice, word_fsa_with_epsilon_loops, b_to_a_map=path_to_utt_map, sorted_match_a=True, ) # path_lattice has word IDs as labels and token IDs as aux_labels path_lattice = k2.top_sort(k2.connect(path_lattice)) one_best = k2.shortest_path(path_lattice, use_double_scores=use_double_scores) one_best = k2.invert(one_best) # Now one_best has token IDs as labels and word IDs as aux_labels return Nbest(fsa=one_best, shape=self.shape) def compute_am_scores(self) -> k2.RaggedTensor: """Compute AM scores of each linear FSA (i.e., each path within an utterance). Hint: `self.fsa.scores` contains two parts: acoustic scores (AM scores) and n-gram language model scores (LM scores). Caution: We require that ``self.fsa`` has an attribute ``lm_scores``. Returns: Return a ragged tensor with 2 axes [utt][path_scores]. Its dtype is torch.float64. """ scores_shape = self.fsa.arcs.shape().remove_axis(1) # scores_shape has axes [path][arc] am_scores = self.fsa.scores - self.fsa.lm_scores ragged_am_scores = k2.RaggedTensor(scores_shape, am_scores.contiguous()) tot_scores = ragged_am_scores.sum() return k2.RaggedTensor(self.shape, tot_scores) def compute_lm_scores(self) -> k2.RaggedTensor: """Compute LM scores of each linear FSA (i.e., each path within an utterance). Hint: `self.fsa.scores` contains two parts: acoustic scores (AM scores) and n-gram language model scores (LM scores). Caution: We require that ``self.fsa`` has an attribute ``lm_scores``. Returns: Return a ragged tensor with 2 axes [utt][path_scores]. Its dtype is torch.float64. """ scores_shape = self.fsa.arcs.shape().remove_axis(1) # scores_shape has axes [path][arc] ragged_lm_scores = k2.RaggedTensor( scores_shape, self.fsa.lm_scores.contiguous() ) tot_scores = ragged_lm_scores.sum() return k2.RaggedTensor(self.shape, tot_scores) def tot_scores(self) -> k2.RaggedTensor: """Get total scores of FSAs in this Nbest. Note: Since FSAs in Nbest are just linear FSAs, log-semiring and tropical semiring produce the same total scores. Returns: Return a ragged tensor with two axes [utt][path_scores]. Its dtype is torch.float64. """ scores_shape = self.fsa.arcs.shape().remove_axis(1) # scores_shape has axes [path][arc] ragged_scores = k2.RaggedTensor(scores_shape, self.fsa.scores.contiguous()) tot_scores = ragged_scores.sum() return k2.RaggedTensor(self.shape, tot_scores) def build_levenshtein_graphs(self) -> k2.Fsa: """Return an FsaVec with axes [utt][state][arc].""" word_ids = get_texts(self.fsa, return_ragged=True) return k2.levenshtein_graph(word_ids) def one_best_decoding( lattice: k2.Fsa, use_double_scores: bool = True, lm_scale_list: Optional[List[float]] = None, ) -> Union[k2.Fsa, Dict[str, k2.Fsa]]: """Get the best path from a lattice. Args: lattice: The decoding lattice returned by :func:`get_lattice`. use_double_scores: True to use double precision floating point in the computation. False to use single precision. lm_scale_list: A list of floats representing LM score scales. Return: An FsaVec containing linear paths. """ if lm_scale_list is not None: ans = dict() saved_am_scores = lattice.scores - lattice.lm_scores for lm_scale in lm_scale_list: am_scores = saved_am_scores / lm_scale lattice.scores = am_scores + lattice.lm_scores best_path = k2.shortest_path(lattice, use_double_scores=use_double_scores) key = f"lm_scale_{lm_scale}" ans[key] = best_path return ans return k2.shortest_path(lattice, use_double_scores=use_double_scores) def nbest_decoding( lattice: k2.Fsa, num_paths: int, use_double_scores: bool = True, nbest_scale: float = 1.0, ) -> k2.Fsa: """It implements something like CTC prefix beam search using n-best lists. The basic idea is to first extract `num_paths` paths from the given lattice, build a word sequence from these paths, and compute the total scores of the word sequence in the tropical semiring. The one with the max score is used as the decoding output. Caution: Don't be confused by `best` in the name `n-best`. Paths are selected **randomly**, not by ranking their scores. Hint: This decoding method is for demonstration only and it does not produce a lower WER than :func:`one_best_decoding`. Args: lattice: The decoding lattice, e.g., can be the return value of :func:`get_lattice`. It has 3 axes [utt][state][arc]. num_paths: It specifies the size `n` in n-best. Note: Paths are selected randomly and those containing identical word sequences are removed and only one of them is kept. use_double_scores: True to use double precision floating point in the computation. False to use single precision. nbest_scale: It's the scale applied to the `lattice.scores`. A smaller value leads to more unique paths at the risk of missing the correct path. Returns: An FsaVec containing **linear** FSAs. It axes are [utt][state][arc]. """ nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, nbest_scale=nbest_scale, ) # nbest.fsa.scores contains 0s nbest = nbest.intersect(lattice) # now nbest.fsa.scores gets assigned # max_indexes contains the indexes for the path with the maximum score # within an utterance. max_indexes = nbest.tot_scores().argmax() best_path = k2.index_fsa(nbest.fsa, max_indexes) return best_path def nbest_oracle( lattice: k2.Fsa, num_paths: int, ref_texts: List[str], word_table: k2.SymbolTable, use_double_scores: bool = True, nbest_scale: float = 0.5, oov: str = "", ) -> Dict[str, List[List[int]]]: """Select the best hypothesis given a lattice and a reference transcript. The basic idea is to extract `num_paths` paths from the given lattice, unique them, and select the one that has the minimum edit distance with the corresponding reference transcript as the decoding output. The decoding result returned from this function is the best result that we can obtain using n-best decoding with all kinds of rescoring techniques. This function is useful to tune the value of `nbest_scale`. Args: lattice: An FsaVec with axes [utt][state][arc]. Note: We assume its `aux_labels` contains word IDs. num_paths: The size of `n` in n-best. ref_texts: A list of reference transcript. Each entry contains space(s) separated words word_table: It is the word symbol table. use_double_scores: True to use double precision for computation. False to use single precision. nbest_scale: It's the scale applied to the lattice.scores. A smaller value yields more unique paths. oov: The out of vocabulary word. Return: Return a dict. Its key contains the information about the parameters when calling this function, while its value contains the decoding output. `len(ans_dict) == len(ref_texts)` """ device = lattice.device nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, nbest_scale=nbest_scale, ) hyps = nbest.build_levenshtein_graphs() oov_id = word_table[oov] word_ids_list = [] for text in ref_texts: word_ids = [] for word in text.split(): if word in word_table: word_ids.append(word_table[word]) else: word_ids.append(oov_id) word_ids_list.append(word_ids) refs = k2.levenshtein_graph(word_ids_list, device=device) levenshtein_alignment = k2.levenshtein_alignment( refs=refs, hyps=hyps, hyp_to_ref_map=nbest.shape.row_ids(1), sorted_match_ref=True, ) tot_scores = levenshtein_alignment.get_tot_scores( use_double_scores=False, log_semiring=False ) ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) max_indexes = ragged_tot_scores.argmax() best_path = k2.index_fsa(nbest.fsa, max_indexes) return best_path def rescore_with_n_best_list( lattice: k2.Fsa, G: k2.Fsa, num_paths: int, lm_scale_list: List[float], nbest_scale: float = 1.0, use_double_scores: bool = True, ) -> Dict[str, k2.Fsa]: """Rescore an n-best list with an n-gram LM. The path with the maximum score is used as the decoding output. Args: lattice: An FsaVec with axes [utt][state][arc]. It must have the following attributes: ``aux_labels`` and ``lm_scores``. Its labels are token IDs and ``aux_labels`` word IDs. G: An FsaVec containing only a single FSA. It is an n-gram LM. num_paths: Size of nbest list. lm_scale_list: A list of floats representing LM score scales. nbest_scale: Scale to be applied to ``lattice.score`` when sampling paths using ``k2.random_paths``. use_double_scores: True to use double precision during computation. False to use single precision. Returns: A dict of FsaVec, whose key is an lm_scale and the value is the best decoding path for each utterance in the lattice. """ device = lattice.device assert len(lattice.shape) == 3 assert hasattr(lattice, "aux_labels") assert hasattr(lattice, "lm_scores") assert G.shape == (1, None, None) assert G.device == device assert hasattr(G, "aux_labels") is False max_loop_count = 10 loop_count = 0 while loop_count <= max_loop_count: try: nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, nbest_scale=nbest_scale, ) # nbest.fsa.scores are all 0s at this point nbest = nbest.intersect(lattice) break except RuntimeError as e: logging.info(f"Caught exception:\n{e}\n") logging.info(f"num_paths before decreasing: {num_paths}") num_paths = int(num_paths / 2) if loop_count >= max_loop_count or num_paths <= 0: logging.info("Return None as the resulting lattice is too large.") return None logging.info( "This OOM is not an error. You can ignore it. " "If your model does not converge well, or --max-duration " "is too large, or the input sound file is difficult to " "decode, you will meet this exception." ) logging.info(f"num_paths after decreasing: {num_paths}") loop_count += 1 # Now nbest.fsa has its scores set assert hasattr(nbest.fsa, "lm_scores") am_scores = nbest.compute_am_scores() nbest = nbest.intersect(G) # Now nbest contains only lm scores lm_scores = nbest.tot_scores() ans = dict() for lm_scale in lm_scale_list: tot_scores = am_scores.values / lm_scale + lm_scores.values tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) max_indexes = tot_scores.argmax() best_path = k2.index_fsa(nbest.fsa, max_indexes) key = f"lm_scale_{lm_scale}" ans[key] = best_path return ans def nbest_rescore_with_LM( lattice: k2.Fsa, LM: k2.Fsa, num_paths: int, lm_scale_list: List[float], nbest_scale: float = 1.0, use_double_scores: bool = True, ) -> Dict[str, k2.Fsa]: """Rescore an n-best list with an n-gram LM. The path with the maximum score is used as the decoding output. Args: lattice: An FsaVec with axes [utt][state][arc]. It must have the following attributes: ``aux_labels`` and ``lm_scores``. They are both token IDs. LM: An FsaVec containing only a single FSA. It is one of follows: - LG, L is lexicon and G is word-level n-gram LM. - G, token-level n-gram LM. num_paths: Size of nbest list. lm_scale_list: A list of floats representing LM score scales. nbest_scale: Scale to be applied to ``lattice.score`` when sampling paths using ``k2.random_paths``. use_double_scores: True to use double precision during computation. False to use single precision. Returns: A dict of FsaVec, whose key is an lm_scale and the value is the best decoding path for each utterance in the lattice. """ device = lattice.device assert len(lattice.shape) == 3 assert hasattr(lattice, "aux_labels") assert hasattr(lattice, "lm_scores") assert LM.shape == (1, None, None) assert LM.device == device nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, nbest_scale=nbest_scale, ) # nbest.fsa.scores contains 0s nbest = nbest.intersect(lattice) # Now nbest.fsa has its scores set assert hasattr(nbest.fsa, "lm_scores") # am scores + bi-gram scores hp_scores = nbest.tot_scores() # Now start to intersect nbest with LG or G inv_fsa = k2.invert(nbest.fsa) if hasattr(LM, "aux_labels"): # LM is LG here # delete token IDs as it is not needed del inv_fsa.aux_labels inv_fsa.scores.zero_() inv_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(inv_fsa) path_to_utt_map = nbest.shape.row_ids(1) LM = k2.arc_sort(LM) path_lattice = k2.intersect_device( LM, inv_fsa_with_epsilon_loops, b_to_a_map=torch.zeros_like(path_to_utt_map), sorted_match_a=True, ) # Its labels are token IDs. # If LM is G, its aux_labels are tokens IDs; # If LM is LG, its aux_labels are words IDs. path_lattice = k2.top_sort(k2.connect(path_lattice)) one_best = k2.shortest_path(path_lattice, use_double_scores=use_double_scores) lm_scores = one_best.get_tot_scores( use_double_scores=use_double_scores, log_semiring=True, # Note: we always use True ) # If LM is LG, we might get empty paths lm_scores[lm_scores == float("-inf")] = -1e9 ans = dict() for lm_scale in lm_scale_list: tot_scores = hp_scores.values / lm_scale + lm_scores tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) max_indexes = tot_scores.argmax() best_path = k2.index_fsa(nbest.fsa, max_indexes) key = f"lm_scale_{lm_scale}" ans[key] = best_path return ans def rescore_with_whole_lattice( lattice: k2.Fsa, G_with_epsilon_loops: k2.Fsa, lm_scale_list: Optional[List[float]] = None, use_double_scores: bool = True, ) -> Union[k2.Fsa, Dict[str, k2.Fsa]]: """Intersect the lattice with an n-gram LM and use shortest path to decode. The input lattice is obtained by intersecting `HLG` with a DenseFsaVec, where the `G` in `HLG` is in general a 3-gram LM. The input `G_with_epsilon_loops` is usually a 4-gram LM. You can consider this function as a second pass decoding. In the first pass decoding, we use a small G, while we use a larger G in the second pass decoding. Args: lattice: An FsaVec with axes [utt][state][arc]. Its `aux_lables` are word IDs. It must have an attribute `lm_scores`. G_with_epsilon_loops: An FsaVec containing only a single FSA. It contains epsilon self-loops. It is an acceptor and its labels are word IDs. lm_scale_list: Optional. If none, return the intersection of `lattice` and `G_with_epsilon_loops`. If not None, it contains a list of values to scale LM scores. For each scale, there is a corresponding decoding result contained in the resulting dict. use_double_scores: True to use double precision in the computation. False to use single precision. Returns: If `lm_scale_list` is None, return a new lattice which is the intersection result of `lattice` and `G_with_epsilon_loops`. Otherwise, return a dict whose key is an entry in `lm_scale_list` and the value is the decoding result (i.e., an FsaVec containing linear FSAs). """ # Nbest is not used in this function assert hasattr(lattice, "lm_scores") assert G_with_epsilon_loops.shape == (1, None, None) device = lattice.device lattice.scores = lattice.scores - lattice.lm_scores # We will use lm_scores from G, so remove lats.lm_scores here del lattice.lm_scores assert hasattr(G_with_epsilon_loops, "lm_scores") # Now, lattice.scores contains only am_scores # inv_lattice has word IDs as labels. # Its `aux_labels` is token IDs inv_lattice = k2.invert(lattice) num_seqs = lattice.shape[0] b_to_a_map = torch.zeros(num_seqs, device=device, dtype=torch.int32) # NOTE: The choice of the threshold list is arbitrary here to avoid OOM. # You may need to fine tune it. prune_th_list = [1e-10, 1e-9, 1e-8, 1e-7, 1e-6] prune_th_list += [1e-5, 1e-4, 1e-3, 1e-2, 1e-1] max_loop_count = 10 loop_count = 0 while loop_count <= max_loop_count: try: rescoring_lattice = k2.intersect_device( G_with_epsilon_loops, inv_lattice, b_to_a_map, sorted_match_a=True, ) rescoring_lattice = k2.top_sort(k2.connect(rescoring_lattice)) break except RuntimeError as e: logging.info(f"Caught exception:\n{e}\n") if loop_count >= max_loop_count: logging.info("Return None as the resulting lattice is too large.") return None logging.info(f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}") logging.info( "This OOM is not an error. You can ignore it. " "If your model does not converge well, or --max-duration " "is too large, or the input sound file is difficult to " "decode, you will meet this exception." ) inv_lattice = k2.prune_on_arc_post( inv_lattice, prune_th_list[loop_count], True, ) logging.info(f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}") loop_count += 1 # lat has token IDs as labels # and word IDs as aux_labels. lat = k2.invert(rescoring_lattice) if lm_scale_list is None: return lat ans = dict() saved_am_scores = lat.scores - lat.lm_scores for lm_scale in lm_scale_list: am_scores = saved_am_scores / lm_scale lat.scores = am_scores + lat.lm_scores best_path = k2.shortest_path(lat, use_double_scores=use_double_scores) key = f"lm_scale_{lm_scale}" ans[key] = best_path return ans def rescore_with_attention_decoder( lattice: k2.Fsa, num_paths: int, model: torch.nn.Module, memory: torch.Tensor, memory_key_padding_mask: Optional[torch.Tensor], sos_id: int, eos_id: int, nbest_scale: float = 1.0, ngram_lm_scale: Optional[float] = None, attention_scale: Optional[float] = None, use_double_scores: bool = True, ) -> Dict[str, k2.Fsa]: """This function extracts `num_paths` paths from the given lattice and uses an attention decoder to rescore them. The path with the highest score is the decoding output. Args: lattice: An FsaVec with axes [utt][state][arc]. num_paths: Number of paths to extract from the given lattice for rescoring. model: A transformer model. See the class "Transformer" in conformer_ctc/transformer.py for its interface. memory: The encoder memory of the given model. It is the output of the last torch.nn.TransformerEncoder layer in the given model. Its shape is `(T, N, C)`. memory_key_padding_mask: The padding mask for memory with shape `(N, T)`. sos_id: The token ID for SOS. eos_id: The token ID for EOS. nbest_scale: It's the scale applied to `lattice.scores`. A smaller value leads to more unique paths at the risk of missing the correct path. ngram_lm_scale: Optional. It specifies the scale for n-gram LM scores. attention_scale: Optional. It specifies the scale for attention decoder scores. Returns: A dict of FsaVec, whose key contains a string ngram_lm_scale_attention_scale and the value is the best decoding path for each utterance in the lattice. """ max_loop_count = 10 loop_count = 0 while loop_count <= max_loop_count: try: nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, nbest_scale=nbest_scale, ) # nbest.fsa.scores are all 0s at this point nbest = nbest.intersect(lattice) break except RuntimeError as e: logging.info(f"Caught exception:\n{e}\n") logging.info(f"num_paths before decreasing: {num_paths}") num_paths = int(num_paths / 2) if loop_count >= max_loop_count or num_paths <= 0: logging.info("Return None as the resulting lattice is too large.") return None logging.info( "This OOM is not an error. You can ignore it. " "If your model does not converge well, or --max-duration " "is too large, or the input sound file is difficult to " "decode, you will meet this exception." ) logging.info(f"num_paths after decreasing: {num_paths}") loop_count += 1 # Now nbest.fsa has its scores set. # Also, nbest.fsa inherits the attributes from `lattice`. assert hasattr(nbest.fsa, "lm_scores") am_scores = nbest.compute_am_scores() ngram_lm_scores = nbest.compute_lm_scores() # The `tokens` attribute is set inside `compile_hlg.py` assert hasattr(nbest.fsa, "tokens") assert isinstance(nbest.fsa.tokens, torch.Tensor) path_to_utt_map = nbest.shape.row_ids(1).to(torch.long) # the shape of memory is (T, N, C), so we use axis=1 here expanded_memory = memory.index_select(1, path_to_utt_map) if memory_key_padding_mask is not None: # The shape of memory_key_padding_mask is (N, T), so we # use axis=0 here. expanded_memory_key_padding_mask = memory_key_padding_mask.index_select( 0, path_to_utt_map ) else: expanded_memory_key_padding_mask = None # remove axis corresponding to states. tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens) tokens = tokens.remove_values_leq(0) token_ids = tokens.tolist() if len(token_ids) == 0: print("Warning: rescore_with_attention_decoder(): empty token-ids") return None nll = model.decoder_nll( memory=expanded_memory, memory_key_padding_mask=expanded_memory_key_padding_mask, token_ids=token_ids, sos_id=sos_id, eos_id=eos_id, ) assert nll.ndim == 2 assert nll.shape[0] == len(token_ids) attention_scores = -nll.sum(dim=1) if ngram_lm_scale is None: ngram_lm_scale_list = [0.01, 0.05, 0.08] ngram_lm_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0] ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0] ngram_lm_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0] else: ngram_lm_scale_list = [ngram_lm_scale] if attention_scale is None: attention_scale_list = [0.01, 0.05, 0.08] attention_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0] attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0] attention_scale_list += [2.1, 2.2, 2.3, 2.5, 3.0, 4.0, 5.0] else: attention_scale_list = [attention_scale] ans = dict() for n_scale in ngram_lm_scale_list: for a_scale in attention_scale_list: tot_scores = ( am_scores.values + n_scale * ngram_lm_scores.values + a_scale * attention_scores ) ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) max_indexes = ragged_tot_scores.argmax() best_path = k2.index_fsa(nbest.fsa, max_indexes) key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}" ans[key] = best_path return ans def rescore_with_rnn_lm( lattice: k2.Fsa, num_paths: int, rnn_lm_model: torch.nn.Module, model: torch.nn.Module, memory: torch.Tensor, memory_key_padding_mask: Optional[torch.Tensor], sos_id: int, eos_id: int, blank_id: int, nbest_scale: float = 1.0, ngram_lm_scale: Optional[float] = None, attention_scale: Optional[float] = None, rnn_lm_scale: Optional[float] = None, use_double_scores: bool = True, ) -> Dict[str, k2.Fsa]: """This function extracts `num_paths` paths from the given lattice and uses an attention decoder to rescore them. The path with the highest score is the decoding output. Args: lattice: An FsaVec with axes [utt][state][arc]. num_paths: Number of paths to extract from the given lattice for rescoring. rnn_lm_model: A rnn-lm model used for LM rescoring model: A transformer model. See the class "Transformer" in conformer_ctc/transformer.py for its interface. memory: The encoder memory of the given model. It is the output of the last torch.nn.TransformerEncoder layer in the given model. Its shape is `(T, N, C)`. memory_key_padding_mask: The padding mask for memory with shape `(N, T)`. sos_id: The token ID for SOS. eos_id: The token ID for EOS. nbest_scale: It's the scale applied to `lattice.scores`. A smaller value leads to more unique paths at the risk of missing the correct path. ngram_lm_scale: Optional. It specifies the scale for n-gram LM scores. attention_scale: Optional. It specifies the scale for attention decoder scores. rnn_lm_scale: Optional. It specifies the scale for RNN LM scores. Returns: A dict of FsaVec, whose key contains a string ngram_lm_scale_attention_scale and the value is the best decoding path for each utterance in the lattice. """ nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, nbest_scale=nbest_scale, ) # nbest.fsa.scores are all 0s at this point nbest = nbest.intersect(lattice) # Now nbest.fsa has its scores set. # Also, nbest.fsa inherits the attributes from `lattice`. assert hasattr(nbest.fsa, "lm_scores") am_scores = nbest.compute_am_scores() ngram_lm_scores = nbest.compute_lm_scores() # The `tokens` attribute is set inside `compile_hlg.py` assert hasattr(nbest.fsa, "tokens") assert isinstance(nbest.fsa.tokens, torch.Tensor) path_to_utt_map = nbest.shape.row_ids(1).to(torch.long) # the shape of memory is (T, N, C), so we use axis=1 here expanded_memory = memory.index_select(1, path_to_utt_map) if memory_key_padding_mask is not None: # The shape of memory_key_padding_mask is (N, T), so we # use axis=0 here. expanded_memory_key_padding_mask = memory_key_padding_mask.index_select( 0, path_to_utt_map ) else: expanded_memory_key_padding_mask = None # remove axis corresponding to states. tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens) tokens = tokens.remove_values_leq(0) token_ids = tokens.tolist() if len(token_ids) == 0: print("Warning: rescore_with_attention_decoder(): empty token-ids") return None nll = model.decoder_nll( memory=expanded_memory, memory_key_padding_mask=expanded_memory_key_padding_mask, token_ids=token_ids, sos_id=sos_id, eos_id=eos_id, ) assert nll.ndim == 2 assert nll.shape[0] == len(token_ids) attention_scores = -nll.sum(dim=1) # Now for RNN LM sos_tokens = add_sos(tokens, sos_id) tokens_eos = add_eos(tokens, eos_id) sos_tokens_row_splits = sos_tokens.shape.row_splits(1) sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1] x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id) y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id) x_tokens = x_tokens.to(torch.int64) y_tokens = y_tokens.to(torch.int64) sentence_lengths = sentence_lengths.to(torch.int64) rnn_lm_nll = rnn_lm_model(x=x_tokens, y=y_tokens, lengths=sentence_lengths) assert rnn_lm_nll.ndim == 2 assert rnn_lm_nll.shape[0] == len(token_ids) rnn_lm_scores = -1 * rnn_lm_nll.sum(dim=1) ngram_lm_scale_list = DEFAULT_LM_SCALE attention_scale_list = DEFAULT_LM_SCALE rnn_lm_scale_list = DEFAULT_LM_SCALE if ngram_lm_scale: ngram_lm_scale_list = [ngram_lm_scale] if attention_scale: attention_scale_list = [attention_scale] if rnn_lm_scale: rnn_lm_scale_list = [rnn_lm_scale] ans = dict() for n_scale in ngram_lm_scale_list: for a_scale in attention_scale_list: for r_scale in rnn_lm_scale_list: tot_scores = ( am_scores.values + n_scale * ngram_lm_scores.values + a_scale * attention_scores + r_scale * rnn_lm_scores ) ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) max_indexes = ragged_tot_scores.argmax() best_path = k2.index_fsa(nbest.fsa, max_indexes) key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}_rnn_lm_scale_{r_scale}" # noqa ans[key] = best_path return ans