#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads torchscript models, exported by `torch.jit.script()` and uses them to decode waves. You can use the following command to get the exported models: ./tiny_transducer_ctc/export.py \ --exp-dir ./tiny_transducer_ctc/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 \ --jit 1 Usage of this script: ./tiny_transducer_ctc/jit_pretrained.py \ --nn-model-filename ./tiny_transducer_ctc/exp/cpu_jit.pt \ /path/to/foo.wav \ /path/to/bar.wav """ import argparse import logging import math from typing import List import kaldifeat import sentencepiece as spm import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--nn-model-filename", type=str, required=True, help="Path to the torchscript model cpu_jit.pt", ) parser.add_argument( "--bpe-model", type=str, help="""Path to bpe.model.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float = 16000 ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search( model: torch.jit.ScriptModule, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ) -> List[List[int]]: """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. Args: model: The transducer model. encoder_out: A 3-D tensor of shape (N, T, C) encoder_out_lens: A 1-D tensor of shape (N,). Returns: Return the decoded results for each utterance. """ assert encoder_out.ndim == 3 assert encoder_out.size(0) >= 1, encoder_out.size(0) packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( input=encoder_out, lengths=encoder_out_lens.cpu(), batch_first=True, enforce_sorted=False, ) device = encoder_out.device blank_id = 0 # hard-code to 0 batch_size_list = packed_encoder_out.batch_sizes.tolist() N = encoder_out.size(0) assert torch.all(encoder_out_lens > 0), encoder_out_lens assert N == batch_size_list[0], (N, batch_size_list) context_size = model.decoder.context_size hyps = [[blank_id] * context_size for _ in range(N)] decoder_input = torch.tensor( hyps, device=device, dtype=torch.int64, ) # (N, context_size) decoder_out = model.decoder( decoder_input, need_pad=torch.tensor([False]), ).squeeze(1) offset = 0 for batch_size in batch_size_list: start = offset end = offset + batch_size current_encoder_out = packed_encoder_out.data[start:end] current_encoder_out = current_encoder_out # current_encoder_out's shape: (batch_size, encoder_out_dim) offset = end decoder_out = decoder_out[:batch_size] logits = model.joiner( current_encoder_out, decoder_out, ) # logits'shape (batch_size, vocab_size) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: hyps[i].append(v) emitted = True if emitted: # update decoder output decoder_input = [h[-context_size:] for h in hyps[:batch_size]] decoder_input = torch.tensor( decoder_input, device=device, dtype=torch.int64, ) decoder_out = model.decoder( decoder_input, need_pad=torch.tensor([False]), ) decoder_out = decoder_out.squeeze(1) sorted_ans = [h[context_size:] for h in hyps] ans = [] unsorted_indices = packed_encoder_out.unsorted_indices.tolist() for i in range(N): ans.append(sorted_ans[unsorted_indices[i]]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") model = torch.jit.load(args.nn_model_filename) model.eval() model.to(device) sp = spm.SentencePieceProcessor() sp.load(args.bpe_model) logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = 16000 opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, ) waves = [w.to(device) for w in waves] logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, device=device) encoder_out, encoder_out_lens = model.encoder( x=features, x_lens=feature_lengths, ) hyps = greedy_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) s = "\n" for filename, hyp in zip(args.sound_files, hyps): words = sp.decode(hyp) s += f"{filename}:\n{words}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()