# Copyright 2022 Xiaomi Corp. (authors: Wei Kang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple import k2 import torch from icefall.utils import AttributeDict class DecodeStream(object): def __init__( self, params: AttributeDict, initial_states: List[torch.Tensor], decoding_graph: Optional[k2.Fsa] = None, device: torch.device = torch.device("cpu"), ) -> None: """ Args: initial_states: Initial decode states of the model, e.g. the return value of `get_init_state` in conformer.py decoding_graph: Decoding graph used for decoding, may be a TrivialGraph or a HLG. device: The device to run this stream. """ if decoding_graph is not None: assert device == decoding_graph.device self.params = params self.states = initial_states # It contains a 2-D tensors representing the feature frames. self.features: torch.Tensor = None # how many frames are processed. (before subsampling). self.num_processed_frames: int = 0 self._done: bool = False # The transcript of current utterance. self.ground_truth: str = "" # The decoding result (partial or final) of current utterance. self.hyp: List = [] self.feature_len: int = 0 if params.decoding_method == "greedy_search": self.hyp = [params.blank_id] * params.context_size elif params.decoding_method == "fast_beam_search": # The rnnt_decoding_stream for fast_beam_search. self.rnnt_decoding_stream: k2.RnntDecodingStream = ( k2.RnntDecodingStream(decoding_graph) ) else: assert ( False ), f"Decoding method :{params.decoding_method} do not support" @property def done(self) -> bool: """Return True if all the features are processed.""" return self._done def set_features( self, features: torch.Tensor, ) -> None: """Set features tensor of current utterance.""" self.features = features def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]: """Consume chunk_size frames of features""" # plus 3 here because we subsampling features with # lengths = ((x_lens - 1) // 2 - 1) // 2 ret_chunk_size = min( self.features.size(0) - self.num_processed_frames, chunk_size + 3 ) ret_features = self.features[ self.num_processed_frames : self.num_processed_frames # noqa + ret_chunk_size, :, ] self.num_processed_frames += ( chunk_size - 2 * self.params.subsampling_factor - self.params.right_context * self.params.subsampling_factor ) if self.num_processed_frames >= self.features.size(0): self._done = True return ret_features, ret_chunk_size