#!/usr/bin/env python3 # # Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. """ Usage: (1) Export to torchscript model using torch.jit.script() ./pruned_transducer_stateless3/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 \ --jit 1 It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later load it by `torch.jit.load("cpu_jit.pt")`. Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python are on CPU. You can use `to("cuda")` to move them to a CUDA device. It will also generate 3 other files: `encoder_jit_script.pt`, `decoder_jit_script.pt`, and `joiner_jit_script.pt`. (2) Export to torchscript model using torch.jit.trace() ./pruned_transducer_stateless3/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 \ --jit-trace 1 It will generates 3 files: `encoder_jit_trace.pt`, `decoder_jit_trace.pt`, and `joiner_jit_trace.pt`. (3) Export to ONNX format ./pruned_transducer_stateless3/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 \ --onnx 1 It will generate the following three files in the given `exp_dir`. Check `onnx_check.py` for how to use them. - encoder.onnx - decoder.onnx - joiner.onnx (4) Export `model.state_dict()` ./pruned_transducer_stateless3/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 It will generate a file `pretrained.pt` in the given `exp_dir`. You can later load it by `icefall.checkpoint.load_checkpoint()`. To use the generated file with `pruned_transducer_stateless3/decode.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/librispeech/ASR ./pruned_transducer_stateless3/decode.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model Check ./pretrained.py for its usage. Note: If you don't want to train a model from scratch, we have provided one for you. You can get it at https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13 with the following commands: sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13 # You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp """ import argparse import logging from pathlib import Path import onnx import sentencepiece as spm import torch import torch.nn as nn from scaling_converter import convert_scaled_to_non_scaled from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( average_checkpoints, find_checkpoints, load_checkpoint, ) from icefall.utils import str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=28, help="""It specifies the checkpoint to use for averaging. Note: Epoch counts from 0. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--exp-dir", type=str, default="pruned_transducer_stateless3/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500/bpe.model", help="Path to the BPE model", ) parser.add_argument( "--jit", type=str2bool, default=False, help="""True to save a model after applying torch.jit.script. It will generate 4 files: - encoder_jit_script.pt - decoder_jit_script.pt - joiner_jit_script.pt - cpu_jit.pt (which combines the above 3 files) Check ./jit_pretrained.py for how to use them. """, ) parser.add_argument( "--jit-trace", type=str2bool, default=False, help="""True to save a model after applying torch.jit.trace. It will generate 3 files: - encoder_jit_trace.pt - decoder_jit_trace.pt - joiner_jit_trace.pt Check ./jit_pretrained.py for how to use them. """, ) parser.add_argument( "--onnx", type=str2bool, default=False, help="""If True, --jit is ignored and it exports the model to onnx format. Three files will be generated: - encoder.onnx - decoder.onnx - joiner.onnx Check ./onnx_check.py and ./onnx_pretrained.py for how to use them. """, ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", ) parser.add_argument( "--streaming-model", type=str2bool, default=False, help="""Whether to export a streaming model, if the models in exp-dir are streaming model, this should be True. """, ) add_model_arguments(parser) return parser def export_encoder_model_jit_script( encoder_model: nn.Module, encoder_filename: str, ) -> None: """Export the given encoder model with torch.jit.script() Args: encoder_model: The input encoder model encoder_filename: The filename to save the exported model. """ script_model = torch.jit.script(encoder_model) script_model.save(encoder_filename) logging.info(f"Saved to {encoder_filename}") def export_decoder_model_jit_script( decoder_model: nn.Module, decoder_filename: str, ) -> None: """Export the given decoder model with torch.jit.script() Args: decoder_model: The input decoder model decoder_filename: The filename to save the exported model. """ script_model = torch.jit.script(decoder_model) script_model.save(decoder_filename) logging.info(f"Saved to {decoder_filename}") def export_joiner_model_jit_script( joiner_model: nn.Module, joiner_filename: str, ) -> None: """Export the given joiner model with torch.jit.trace() Args: joiner_model: The input joiner model joiner_filename: The filename to save the exported model. """ script_model = torch.jit.script(joiner_model) script_model.save(joiner_filename) logging.info(f"Saved to {joiner_filename}") def export_encoder_model_jit_trace( encoder_model: nn.Module, encoder_filename: str, ) -> None: """Export the given encoder model with torch.jit.trace() Note: The warmup argument is fixed to 1. Args: encoder_model: The input encoder model encoder_filename: The filename to save the exported model. """ x = torch.zeros(1, 100, 80, dtype=torch.float32) x_lens = torch.tensor([100], dtype=torch.int64) traced_model = torch.jit.trace(encoder_model, (x, x_lens)) traced_model.save(encoder_filename) logging.info(f"Saved to {encoder_filename}") def export_decoder_model_jit_trace( decoder_model: nn.Module, decoder_filename: str, ) -> None: """Export the given decoder model with torch.jit.trace() Note: The argument need_pad is fixed to False. Args: decoder_model: The input decoder model decoder_filename: The filename to save the exported model. """ y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) need_pad = torch.tensor([False]) traced_model = torch.jit.trace(decoder_model, (y, need_pad)) traced_model.save(decoder_filename) logging.info(f"Saved to {decoder_filename}") def export_joiner_model_jit_trace( joiner_model: nn.Module, joiner_filename: str, ) -> None: """Export the given joiner model with torch.jit.trace() Note: The argument project_input is fixed to True. A user should not project the encoder_out/decoder_out by himself/herself. The exported joiner will do that for the user. Args: joiner_model: The input joiner model joiner_filename: The filename to save the exported model. """ encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out)) traced_model.save(joiner_filename) logging.info(f"Saved to {joiner_filename}") def export_encoder_model_onnx( encoder_model: nn.Module, encoder_filename: str, opset_version: int = 11, ) -> None: """Export the given encoder model to ONNX format. The exported model has two inputs: - x, a tensor of shape (N, T, C); dtype is torch.float32 - x_lens, a tensor of shape (N,); dtype is torch.int64 and it has two outputs: - encoder_out, a tensor of shape (N, T, C) - encoder_out_lens, a tensor of shape (N,) Note: The warmup argument is fixed to 1. Args: encoder_model: The input encoder model encoder_filename: The filename to save the exported ONNX model. opset_version: The opset version to use. """ x = torch.zeros(1, 100, 80, dtype=torch.float32) x_lens = torch.tensor([100], dtype=torch.int64) # encoder_model = torch.jit.script(encoder_model) # It throws the following error for the above statement # # RuntimeError: Exporting the operator __is_ to ONNX opset version # 11 is not supported. Please feel free to request support or # submit a pull request on PyTorch GitHub. # # I cannot find which statement causes the above error. # torch.onnx.export() will use torch.jit.trace() internally, which # works well for the current reworked model warmup = 1.0 torch.onnx.export( encoder_model, (x, x_lens, warmup), encoder_filename, verbose=False, opset_version=opset_version, input_names=["x", "x_lens", "warmup"], output_names=["encoder_out", "encoder_out_lens"], dynamic_axes={ "x": {0: "N", 1: "T"}, "x_lens": {0: "N"}, "encoder_out": {0: "N", 1: "T"}, "encoder_out_lens": {0: "N"}, }, ) logging.info(f"Saved to {encoder_filename}") def export_decoder_model_onnx( decoder_model: nn.Module, decoder_filename: str, opset_version: int = 11, ) -> None: """Export the decoder model to ONNX format. The exported model has one input: - y: a torch.int64 tensor of shape (N, decoder_model.context_size) and has one output: - decoder_out: a torch.float32 tensor of shape (N, 1, C) Note: The argument need_pad is fixed to False. Args: decoder_model: The decoder model to be exported. decoder_filename: Filename to save the exported ONNX model. opset_version: The opset version to use. """ y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) need_pad = False # Always False, so we can use torch.jit.trace() here # Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script() # in this case torch.onnx.export( decoder_model, (y, need_pad), decoder_filename, verbose=False, opset_version=opset_version, input_names=["y", "need_pad"], output_names=["decoder_out"], dynamic_axes={ "y": {0: "N"}, "decoder_out": {0: "N"}, }, ) logging.info(f"Saved to {decoder_filename}") def export_joiner_model_onnx( joiner_model: nn.Module, joiner_filename: str, opset_version: int = 11, ) -> None: """Export the joiner model to ONNX format. The exported model has two inputs: - encoder_out: a tensor of shape (N, encoder_out_dim) - decoder_out: a tensor of shape (N, decoder_out_dim) and has one output: - joiner_out: a tensor of shape (N, vocab_size) Note: The argument project_input is fixed to True. A user should not project the encoder_out/decoder_out by himself/herself. The exported joiner will do that for the user. """ encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) project_input = True # Note: It uses torch.jit.trace() internally torch.onnx.export( joiner_model, (encoder_out, decoder_out, project_input), joiner_filename, verbose=False, opset_version=opset_version, input_names=["encoder_out", "decoder_out", "project_input"], output_names=["logit"], dynamic_axes={ "encoder_out": {0: "N"}, "decoder_out": {0: "N"}, "logit": {0: "N"}, }, ) logging.info(f"Saved to {joiner_filename}") def export_all_in_one_onnx( encoder_filename: str, decoder_filename: str, joiner_filename: str, all_in_one_filename: str, ): encoder_onnx = onnx.load(encoder_filename) decoder_onnx = onnx.load(decoder_filename) joiner_onnx = onnx.load(joiner_filename) encoder_onnx = onnx.compose.add_prefix(encoder_onnx, prefix="encoder/") decoder_onnx = onnx.compose.add_prefix(decoder_onnx, prefix="decoder/") joiner_onnx = onnx.compose.add_prefix(joiner_onnx, prefix="joiner/") combined_model = onnx.compose.merge_models( encoder_onnx, decoder_onnx, io_map={} ) combined_model = onnx.compose.merge_models( combined_model, joiner_onnx, io_map={} ) onnx.save(combined_model, all_in_one_filename) logging.info(f"Saved to {all_in_one_filename}") @torch.no_grad() def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # is defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() if params.streaming_model: assert params.causal_convolution logging.info(params) logging.info("About to create model") model = get_transducer_model(params, enable_giga=False) model.to(device) if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict( average_checkpoints(filenames, device=device), strict=False ) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict( average_checkpoints(filenames, device=device), strict=False ) model.to("cpu") model.eval() if params.onnx is True: convert_scaled_to_non_scaled(model, inplace=True) opset_version = 11 logging.info("Exporting to onnx format") encoder_filename = params.exp_dir / "encoder.onnx" export_encoder_model_onnx( model.encoder, encoder_filename, opset_version=opset_version, ) decoder_filename = params.exp_dir / "decoder.onnx" export_decoder_model_onnx( model.decoder, decoder_filename, opset_version=opset_version, ) joiner_filename = params.exp_dir / "joiner.onnx" export_joiner_model_onnx( model.joiner, joiner_filename, opset_version=opset_version, ) all_in_one_filename = params.exp_dir / "all_in_one.onnx" export_all_in_one_onnx( encoder_filename, decoder_filename, joiner_filename, all_in_one_filename, ) elif params.jit is True: convert_scaled_to_non_scaled(model, inplace=True) logging.info("Using torch.jit.script()") # We won't use the forward() method of the model in C++, so just ignore # it here. # Otherwise, one of its arguments is a ragged tensor and is not # torch scriptabe. model.__class__.forward = torch.jit.ignore(model.__class__.forward) logging.info("Using torch.jit.script") model = torch.jit.script(model) filename = params.exp_dir / "cpu_jit.pt" model.save(str(filename)) logging.info(f"Saved to {filename}") # Also export encoder/decoder/joiner separately encoder_filename = params.exp_dir / "encoder_jit_script.pt" export_encoder_model_jit_script(model.encoder, encoder_filename) decoder_filename = params.exp_dir / "decoder_jit_script.pt" export_decoder_model_jit_script(model.decoder, decoder_filename) joiner_filename = params.exp_dir / "joiner_jit_script.pt" export_joiner_model_jit_script(model.joiner, joiner_filename) elif params.jit_trace is True: convert_scaled_to_non_scaled(model, inplace=True) logging.info("Using torch.jit.trace()") encoder_filename = params.exp_dir / "encoder_jit_trace.pt" export_encoder_model_jit_trace(model.encoder, encoder_filename) decoder_filename = params.exp_dir / "decoder_jit_trace.pt" export_decoder_model_jit_trace(model.decoder, decoder_filename) joiner_filename = params.exp_dir / "joiner_jit_trace.pt" export_joiner_model_jit_trace(model.joiner, joiner_filename) else: logging.info("Not using torchscript") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "pretrained.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = ( "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) main()