# Results for train-clean-100
This page shows the WERs for test-clean/test-other using only
train-clean-100 subset as training data.
## Conformer encoder + embedding decoder
### 2022-02-21
Using commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`.
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|------------------------------------------|
| greedy search (max sym per frame 1) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
| greedy search (max sym per frame 2) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
| greedy search (max sym per frame 3) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
| modified beam search (beam size 4) | 6.31 | 16.3 | --epoch 57, --avg 17, --max-duration 100 |
The training command for reproducing is given below:
```bash
cd egs/librispeech/ASR/
./prepare.sh
./prepare_giga_speech.sh
export CUDA_VISIBLE_DEVICES="0,1"
./transducer_stateless_multi_datasets/train.py \
--world-size 2 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
--full-libri 0 \
--max-duration 300 \
--lr-factor 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--modified-transducer-prob 0.25
--giga-prob 0.2
```
The decoding command is given below:
```bash
for epoch in 57; do
for avg in 17; do
for sym in 1 2 3; do
./transducer_stateless_multi_datasets/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--max-sym-per-frame $sym
done
done
done
epoch=57
avg=17
./transducer_stateless_multi_datasets/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
```
The tensorboard log is available at
A pre-trained model and decoding logs can be found at