#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao) # # See ../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import k2 import sentencepiece as spm import torch from icefall.lexicon import Lexicon from icefall.utils import parse_bpe_timestamps_and_texts, parse_timestamps_and_texts ICEFALL_DIR = Path(__file__).resolve().parent.parent def test_parse_bpe_timestamps_and_texts(): lang_dir = ICEFALL_DIR / "egs/librispeech/ASR/data/lang_bpe_500" if not lang_dir.is_dir(): print(f"{lang_dir} does not exist.") return sp = spm.SentencePieceProcessor() sp.load(str(lang_dir / "bpe.model")) text = "HELLO WORLD" token_ids = sp.encode(text, out_type=int) # out_type=str: ['_HE', 'LL', 'O', '_WORLD'] # out_type=int: [22, 58, 24, 425] # [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0] labels = ( token_ids[0:1] * 2 + token_ids[1:3] + [0] * 2 + token_ids[3:4] * 3 + [0] * 2 ) # [22, 0, 58, 24, 0, 0, 425, 0, 0, 0, 0] aux_labels = ( token_ids[0:1] + [0] + token_ids[1:3] + [0] * 2 + token_ids[3:4] + [0] * 4 + [-1] ) fsa = k2.linear_fsa(labels) fsa.aux_labels = torch.tensor(aux_labels).to(torch.int32) fsa_vec = k2.create_fsa_vec([fsa]) utt_index_pairs, utt_words = parse_bpe_timestamps_and_texts(fsa_vec, sp) assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0] assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0] def test_parse_timestamps_and_texts(): lang_dir = ICEFALL_DIR / "egs/librispeech/ASR/data/lang_bpe_500" if not lang_dir.is_dir(): print(f"{lang_dir} does not exist.") return lexicon = Lexicon(lang_dir) sp = spm.SentencePieceProcessor() sp.load(str(lang_dir / "bpe.model")) text = "HELLO WORLD" token_ids = sp.encode(text, out_type=int) # out_type=str: ['_HE', 'LL', 'O', '_WORLD'] # out_type=int: [22, 58, 24, 425] word_table = lexicon.word_table word_ids = [word_table[s] for s in text.split()] # [79677, 196937] # [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0] labels = ( token_ids[0:1] * 2 + token_ids[1:3] + [0] * 2 + token_ids[3:4] * 3 + [0] * 2 ) # [[79677], [], [], [], [], [], [196937], [], [], [], [], []] aux_labels = [word_ids[0:1]] + [[]] * 5 + [word_ids[1:2]] + [[]] * 5 fsa = k2.linear_fsa(labels) fsa.aux_labels = k2.RaggedTensor(aux_labels) fsa_vec = k2.create_fsa_vec([fsa, fsa]) utt_index_pairs, utt_words = parse_timestamps_and_texts(fsa_vec, word_table) assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0] assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0] if __name__ == "__main__": test_parse_bpe_timestamps_and_texts() test_parse_timestamps_and_texts()