#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=1 stage=-1 stop_stage=100 dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/LJSpeech, # you can create a symlink # # ln -sfv /path/to/LJSpeech $dl_dir/LJSpeech # if [ ! -d $dl_dir/LJSpeech-1.1 ]; then lhotse download ljspeech $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LJSpeech manifest" # We assume that you have downloaded the LJSpeech corpus # to $dl_dir/LJSpeech mkdir -p data/manifests if [ ! -e data/manifests/.ljspeech.done ]; then lhotse prepare ljspeech $dl_dir/LJSpeech-1.1 data/manifests touch data/manifests/.ljspeech.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Compute spectrogram for LJSpeech" mkdir -p data/spectrogram if [ ! -e data/spectrogram/.ljspeech.done ]; then ./local/compute_spectrogram_ljspeech.py touch data/spectrogram/.ljspeech.done fi if [ ! -e data/spectrogram/.ljspeech-validated.done ]; then log "Validating data/fbank for LJSpeech" python3 ./local/validate_manifest.py \ data/spectrogram/ljspeech_cuts_all.jsonl.gz touch data/spectrogram/.ljspeech-validated.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Split the LJSpeech cuts into train, valid and test sets" if [ ! -e data/spectrogram/.ljspeech_split.done ]; then lhotse subset --last 600 \ data/spectrogram/ljspeech_cuts_all.jsonl.gz \ data/spectrogram/ljspeech_cuts_validtest.jsonl.gz lhotse subset --first 100 \ data/spectrogram/ljspeech_cuts_validtest.jsonl.gz \ data/spectrogram/ljspeech_cuts_valid.jsonl.gz lhotse subset --last 500 \ data/spectrogram/ljspeech_cuts_validtest.jsonl.gz \ data/spectrogram/ljspeech_cuts_test.jsonl.gz rm data/spectrogram/ljspeech_cuts_validtest.jsonl.gz n=$(( $(gunzip -c data/spectrogram/ljspeech_cuts_all.jsonl.gz | wc -l) - 600 )) lhotse subset --first $n \ data/spectrogram/ljspeech_cuts_all.jsonl.gz \ data/spectrogram/ljspeech_cuts_train.jsonl.gz touch data/spectrogram/.ljspeech_split.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Generate token file" if [ ! -e data/tokens.txt ]; then ./local/prepare_token_file.py \ --manifest-file data/spectrogram/ljspeech_cuts_train.jsonl.gz \ --tokens data/tokens.txt fi fi