#!/usr/bin/env bash set -eou pipefail nj=15 stage=-1 stop_stage=100 . local/parse_options.sh || exit 1 mkdir -p data if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then echo "stage -1: Download LM" mkdir -p data/lm ./local/download_lm.py fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then echo "stage 0: Download data" # If you have pre-downloaded it to /path/to/LibriSpeech, # you can create a symlink # # ln -sfv /path/to/LibriSpeech data/ # # The script checks that if # # data/LibriSpeech/test-clean/.completed exists, # # it will not re-download it. # # The same goes for dev-clean, dev-other, test-other, train-clean-100 # train-clean-360, and train-other-500 mkdir -p data/LibriSpeech lhotse download librispeech --full data # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan data/ # # and create a file data/.musan_completed # to avoid downloading it again if [ ! -f data/.musan_completed ]; then lhotse download musan data fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then echo "Stage 1: Prepare librispeech manifest" # We assume that you have downloaded the librispeech corpus # to data/LibriSpeech mkdir -p data/manifests lhotse prepare librispeech -j $nj data/LibriSpeech data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then echo "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan data/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then echo "Stage 3: Compute fbank for librispeech" mkdir -p data/fbank ./local/compute_fbank_librispeech.py fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then echo "Stage 4: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then echo "Stage 5: Prepare phone based lang" # TODO: add BPE based lang mkdir -p data/lang (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - data/lm/librispeech-lexicon.txt | sort | uniq > data/lang/lexicon.txt ./local/prepare_lang.py fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then echo "Stage 6: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ data/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then echo "Stage 7: Compile HLG" if [ ! -f data/lm/HLG.pt ]; then python3 ./local/compile_hlg.py fi fi