#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, # Fangjun Kuang, # Quandong Wang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from collections import defaultdict from pathlib import Path from typing import Dict, List, Optional, Tuple import k2 import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import TedLiumAsrDataModule from conformer import Conformer from train import add_model_arguments from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.decode import ( get_lattice, nbest_decoding, nbest_oracle, one_best_decoding, rescore_with_attention_decoder, rescore_with_n_best_list, rescore_with_whole_lattice, ) from icefall.env import get_env_info from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, get_texts, load_averaged_model, setup_logger, store_transcripts, str2bool, write_error_stats, ) def get_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--method", type=str, default="attention-decoder", help="""Decoding method. Supported values are: - (0) ctc-decoding. Use CTC decoding. It uses a sentence piece model, i.e., lang_dir/bpe.model, to convert word pieces to words. It needs neither a lexicon nor an n-gram LM. - (1) ctc-greedy-search. It only use CTC output and a sentence piece model for decoding. It produces the same results with ctc-decoding. - (2) 1best. Extract the best path from the decoding lattice as the decoding result. - (3) nbest. Extract n paths from the decoding lattice; the path with the highest score is the decoding result. - (4) nbest-rescoring. Extract n paths from the decoding lattice, rescore them with an n-gram LM (e.g., a 4-gram LM), the path with the highest score is the decoding result. - (5) whole-lattice-rescoring. Rescore the decoding lattice with an n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice is the decoding result. - (6) attention-decoder. Extract n paths from the LM rescored lattice, the path with the highest score is the decoding result. - (7) nbest-oracle. Its WER is the lower bound of any n-best rescoring method can achieve. Useful for debugging n-best rescoring method. """, ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--num-paths", type=int, default=100, help="""Number of paths for n-best based decoding method. Used only when "method" is one of the following values: nbest, nbest-rescoring, attention-decoder, and nbest-oracle """, ) parser.add_argument( "--nbest-scale", type=float, default=0.5, help="""The scale to be applied to `lattice.scores`. It's needed if you use any kinds of n-best based rescoring. Used only when "method" is one of the following values: nbest, nbest-rescoring, attention-decoder, and nbest-oracle A smaller value results in more unique paths. """, ) parser.add_argument( "--exp-dir", type=str, default="conformer_ctc2/exp", help="The experiment dir", ) parser.add_argument( "--lang-dir", type=str, default="data/lang_bpe_500", help="The lang dir", ) parser.add_argument( "--lm-path", type=str, default="data/lm/G_4_gram.pt", help="""The n-gram LM dir for rescoring. It should contain either lm_fname.pt or lm_fname.fst.txt """, ) parser.add_argument( "--result-dir", type=str, default="conformer_ctc2/exp/results", help="Directory to store results.", ) add_model_arguments(parser) return parser def get_params() -> AttributeDict: """Return a dict containing training parameters. All training related parameters that are not passed from the commandline are saved in the variable `params`. Commandline options are merged into `params` after they are parsed, so you can also access them via `params`. Explanation of options saved in `params`: - feature_dim: The model input dim. It has to match the one used in computing features. - subsampling_factor: The subsampling factor for the model. """ params = AttributeDict( { # parameters for conformer "subsampling_factor": 4, "feature_dim": 80, # parameters for decoding "search_beam": 15, "output_beam": 8, "min_active_states": 10, "max_active_states": 7000, "use_double_scores": True, "env_info": get_env_info(), } ) return params def ctc_greedy_search( ctc_probs: torch.Tensor, mask: torch.Tensor, ) -> List[List[int]]: """Apply CTC greedy search Args: ctc_probs (torch.Tensor): (batch, max_len, num_bpe) mask (torch.Tensor): (batch, max_len) Returns: best path result """ _, max_index = ctc_probs.max(2) # (B, maxlen) max_index = max_index.masked_fill_(mask, 0) # (B, maxlen) ret_hyps = [] for hyp in max_index: hyp = torch.unique_consecutive(hyp) hyp = hyp[hyp > 0].tolist() ret_hyps.append(hyp) return ret_hyps def decode_one_batch( params: AttributeDict, model: nn.Module, HLG: Optional[k2.Fsa], H: Optional[k2.Fsa], bpe_model: Optional[spm.SentencePieceProcessor], batch: dict, word_table: k2.SymbolTable, sos_id: int, eos_id: int, G: Optional[k2.Fsa] = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if no rescoring is used, the key is the string `no_rescore`. If LM rescoring is used, the key is the string `lm_scale_xxx`, where `xxx` is the value of `lm_scale`. An example key is `lm_scale_0.7` - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. - params.method is "1best", it uses 1best decoding without LM rescoring. - params.method is "nbest", it uses nbest decoding without LM rescoring. - params.method is "nbest-rescoring", it uses nbest LM rescoring. - params.method is "whole-lattice-rescoring", it uses whole lattice LM rescoring. model: The neural model. HLG: The decoding graph. Used only when params.method is NOT ctc-decoding. H: The ctc topo. Used only when params.method is ctc-decoding. bpe_model: The BPE model. Used only when params.method is ctc-decoding. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. word_table: The word symbol table. sos_id: The token ID of the SOS. eos_id: The token ID of the EOS. G: An LM. It is not None when params.method is "nbest-rescoring" or "whole-lattice-rescoring". In general, the G in HLG is a 3-gram LM, while this G is a 4-gram LM. Returns: Return the decoding result. See above description for the format of the returned dict. Note: If it decodes to nothing, then return None. """ if HLG is not None: device = HLG.device else: device = H.device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] nnet_output, memory, memory_key_padding_mask = model(feature, supervisions) # nnet_output is (N, T, C) supervision_segments = torch.stack( ( supervisions["sequence_idx"], torch.div( supervisions["start_frame"], params.subsampling_factor, rounding_mode="floor", ), torch.div( supervisions["num_frames"], params.subsampling_factor, rounding_mode="floor", ), ), 1, ).to(torch.int32) if H is None: assert HLG is not None decoding_graph = HLG else: assert HLG is None assert bpe_model is not None decoding_graph = H lattice = get_lattice( nnet_output=nnet_output, decoding_graph=decoding_graph, supervision_segments=supervision_segments, search_beam=params.search_beam, output_beam=params.output_beam, min_active_states=params.min_active_states, max_active_states=params.max_active_states, subsampling_factor=params.subsampling_factor, ) if params.method == "ctc-decoding": best_path = one_best_decoding( lattice=lattice, use_double_scores=params.use_double_scores ) # Note: `best_path.aux_labels` contains token IDs, not word IDs # since we are using H, not HLG here. # # token_ids is a lit-of-list of IDs token_ids = get_texts(best_path) # hyps is a list of str, e.g., ['xxx yyy zzz', ...] hyps = bpe_model.decode(token_ids) # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] unk = bpe_model.decode(bpe_model.unk_id()).strip() hyps = [[w for w in s.split() if w != unk] for s in hyps] key = "ctc-decoding" return {key: hyps} if params.method == "ctc-greedy-search": hyps = ctc_greedy_search(nnet_output, memory_key_padding_mask) # hyps is a list of str, e.g., ['xxx yyy zzz', ...] hyps = bpe_model.decode(hyps) # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] unk = bpe_model.decode(bpe_model.unk_id()).strip() hyps = [[w for w in s.split() if w != unk] for s in hyps] key = "ctc-greedy-search" return {key: hyps} if params.method == "nbest-oracle": # Note: You can also pass rescored lattices to it. # We choose the HLG decoded lattice for speed reasons # as HLG decoding is faster and the oracle WER # is only slightly worse than that of rescored lattices. best_path = nbest_oracle( lattice=lattice, num_paths=params.num_paths, ref_texts=supervisions["text"], word_table=word_table, nbest_scale=params.nbest_scale, oov="", ) hyps = get_texts(best_path) hyps = [ [word_table[i] for i in ids if word_table[i] != ""] for ids in hyps ] key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa return {key: hyps} if params.method == "nbest": best_path = nbest_decoding( lattice=lattice, num_paths=params.num_paths, use_double_scores=params.use_double_scores, nbest_scale=params.nbest_scale, ) key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa hyps = get_texts(best_path) hyps = [ [word_table[i] for i in ids if word_table[i] != ""] for ids in hyps ] return {key: hyps} assert params.method in [ "1best", "nbest-rescoring", "whole-lattice-rescoring", "attention-decoder", ] lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] if params.method == "1best": best_path_dict = one_best_decoding( lattice=lattice, lm_scale_list=lm_scale_list, ) elif params.method == "nbest-rescoring": best_path_dict = rescore_with_n_best_list( lattice=lattice, G=G, num_paths=params.num_paths, lm_scale_list=lm_scale_list, nbest_scale=params.nbest_scale, ) elif params.method == "whole-lattice-rescoring": best_path_dict = rescore_with_whole_lattice( lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list, ) elif params.method == "attention-decoder": best_path_dict = rescore_with_attention_decoder( lattice=lattice, num_paths=params.num_paths, model=model, memory=memory, memory_key_padding_mask=memory_key_padding_mask, sos_id=sos_id, eos_id=eos_id, nbest_scale=params.nbest_scale, ) else: raise ValueError(f"Unsupported decoding method: {params.method}") ans = dict() if best_path_dict is not None: for lm_scale_str, best_path in best_path_dict.items(): hyps = get_texts(best_path) hyps = [ [word_table[i] for i in ids if word_table[i] != ""] for ids in hyps ] ans[lm_scale_str] = hyps else: ans = None return ans def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, HLG: Optional[k2.Fsa], H: Optional[k2.Fsa], bpe_model: Optional[spm.SentencePieceProcessor], word_table: k2.SymbolTable, sos_id: int, eos_id: int, G: Optional[k2.Fsa] = None, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. HLG: The decoding graph. Used only when params.method is NOT ctc-decoding. H: The ctc topo. Used only when params.method is ctc-decoding. bpe_model: The BPE model. Used only when params.method is ctc-decoding. word_table: It is the word symbol table. sos_id: The token ID for SOS. eos_id: The token ID for EOS. G: An LM. It is not None when params.method is "nbest-rescoring" or "whole-lattice-rescoring". In general, the G in HLG is a 3-gram LM, while this G is a 4-gram LM. Returns: Return a dict, whose key may be "no-rescore" if no LM rescoring is used, or it may be "lm_scale_0.7" if LM rescoring is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" results = defaultdict(list) for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] hyps_dict = decode_one_batch( params=params, model=model, HLG=HLG, H=H, bpe_model=bpe_model, batch=batch, word_table=word_table, G=G, sos_id=sos_id, eos_id=eos_id, ) if hyps_dict is not None: for lm_scale, hyps in hyps_dict.items(): this_batch = [] assert len(hyps) == len(texts) for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): ref_words = ref_text.split() this_batch.append((cut_id, ref_words, hyp_words)) results[lm_scale].extend(this_batch) else: assert len(results) > 0, "It should not decode to empty in the first batch!" this_batch = [] hyp_words = [] for ref_text in texts: ref_words = ref_text.split() this_batch.append((ref_words, hyp_words)) for lm_scale in results.keys(): results[lm_scale].extend(this_batch) num_cuts += len(texts) if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], ) -> None: if params.method == "attention-decoder": # Set it to False since there are too many logs. enable_log = False else: enable_log = True test_set_wers = dict() for key, results in results_dict.items(): recog_path = params.result_dir / f"recogs-{test_set_name}-{key}.txt" results = sorted(results) store_transcripts(filename=recog_path, texts=results) if enable_log: logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = params.result_dir / f"errs-{test_set_name}-{key}.txt" with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=enable_log ) test_set_wers[key] = wer if enable_log: logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.result_dir / f"wer-summary-{test_set_name}.txt" with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main() -> None: parser = get_parser() TedLiumAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) args.lang_dir = Path(args.lang_dir) args.lm_path = Path(args.lm_path) args.result_dir = Path(args.result_dir) args.result_dir.mkdir(exist_ok=True) params = get_params() params.update(vars(args)) setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode") logging.info("Decoding started") logging.info(params) lexicon = Lexicon(params.lang_dir) max_token_id = max(lexicon.tokens) num_classes = max_token_id + 1 # +1 for the blank device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") graph_compiler = BpeCtcTrainingGraphCompiler( params.lang_dir, device=device, sos_token="", eos_token="", ) sos_id = graph_compiler.sos_id eos_id = graph_compiler.eos_id if params.method in ("ctc-decoding", "ctc-greedy-search"): HLG = None H = k2.ctc_topo( max_token=max_token_id, modified=False, device=device, ) bpe_model = spm.SentencePieceProcessor() bpe_model.load(str(params.lang_dir / "bpe.model")) else: H = None bpe_model = None HLG = k2.Fsa.from_dict( torch.load(f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False) ) assert HLG.requires_grad is False if not hasattr(HLG, "lm_scores"): HLG.lm_scores = HLG.scores.clone() if params.method in ("nbest-rescoring", "whole-lattice-rescoring"): assert params.lm_path.suffix in (".pt", ".txt") if params.lm_path.is_file() and params.lm_path.suffix == ".pt": logging.info(f"Loading pre-compiled {params.lm_path.name}") d = torch.load(params.lm_path, map_location=device, weights_only=False) G = k2.Fsa.from_dict(d) elif not params.lm_path.is_file() and params.lm_path.suffix == ".txt": raise FileNotFoundError(f"No such language model file: '{params.lm_path}'") else: # here we pass only if LM filename ends with '.pt' and doesn't exist # or if LM filename ends '.txt' and exists. if ( not params.lm_path.is_file() and params.lm_path.suffix == ".pt" and not ( params.lm_path.parent / f"{params.lm_path.stem}.fst.txt" ).is_file() ): raise FileNotFoundError( f"No such language model file: '{params.lm_path}'\n" "'.fst.txt' representation of the language model was " "not found either." ) else: # whatever params.lm_path.name we got lm_name.pt or lm_name.fst.txt # we are going to load lm_name.fst.txt here params.lm_path = params.lm_path.parent / params.lm_path.name.replace( ".pt", ".fst.txt" ) logging.info(f"Loading {params.lm_path.name}") logging.warning("It may take 8 minutes.") with open(params.lm_path) as f: first_word_disambig_id = lexicon.word_table["#0"] G = k2.Fsa.from_openfst(f.read(), acceptor=False) # G.aux_labels is not needed in later computations, so # remove it here. del G.aux_labels # CAUTION: The following line is crucial. # Arcs entering the back-off state have label equal to #0. # We have to change it to 0 here. G.labels[G.labels >= first_word_disambig_id] = 0 # See https://github.com/k2-fsa/k2/issues/874 # for why we need to set G.properties to None G.__dict__["_properties"] = None G = k2.Fsa.from_fsas([G]).to(device) G = k2.arc_sort(G) # Save a dummy value so that it can be loaded in C++. # See https://github.com/pytorch/pytorch/issues/67902 # for why we need to do this. G.dummy = 1 torch.save( G.as_dict(), params.lm_path.parent / params.lm_path.name.replace(".fst.txt", ".pt"), ) if params.method == "whole-lattice-rescoring": # Add epsilon self-loops to G as we will compose # it with the whole lattice later G = k2.add_epsilon_self_loops(G) G = k2.arc_sort(G) G = G.to(device) # G.lm_scores is used to replace HLG.lm_scores during # LM rescoring. G.lm_scores = G.scores.clone() else: G = None model = Conformer( num_features=params.feature_dim, num_classes=num_classes, subsampling_factor=params.subsampling_factor, d_model=params.dim_model, nhead=params.nhead, dim_feedforward=params.dim_feedforward, num_encoder_layers=params.num_encoder_layers, num_decoder_layers=params.num_decoder_layers, ) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.to(device) model.eval() num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") # we need cut ids to display recognition results. args.return_cuts = True tedlium = TedLiumAsrDataModule(args) valid_cuts = tedlium.dev_cuts() test_cuts = tedlium.test_cuts() valid_dl = tedlium.valid_dataloaders(valid_cuts) test_dl = tedlium.test_dataloaders(test_cuts) test_sets = ["dev", "test"] test_dls = [valid_dl, test_dl] for test_set, test_dl in zip(test_sets, test_dls): results_dict = decode_dataset( dl=test_dl, params=params, model=model, HLG=HLG, H=H, bpe_model=bpe_model, word_table=lexicon.word_table, G=G, sos_id=sos_id, eos_id=eos_id, ) save_results(params=params, test_set_name=test_set, results_dict=results_dict) logging.info("Done!") torch.set_num_threads(1) # when we import add_model_arguments from train.py # we enforce torch.set_num_interop_threads(1) in it, # so we ended up with setting num_interop_threads to one # two times: in train.py and decode.py which cause an error, # that is why added an additional if statement. if torch.get_num_interop_threads() != 1: torch.set_num_interop_threads(1) # The flag below controls whether to allow TF32 on matmul. This flag defaults to False # in PyTorch 1.12 and later. torch.backends.cuda.matmul.allow_tf32 = True if __name__ == "__main__": main()