#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 # Run step 0 to step 8 by default stage=0 stop_stage=8 # Compute fbank features for a subset of splits from `start` (inclusive) to `stop` (exclusive) start=0 stop=-1 # -1 means until the end # Note: This script just prepares the minimal requirements needed by a # transducer training with bpe units. # # If you want to use ngram, please continue running prepare_lm.sh after # you succeed in running this script. # # This script also contains the steps to generate phone based units, but they # will not run automatically, you can generate the phone based units by # bash prepare.sh --stage 9 --stop-stage 9 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/GigaSpeech # You can find audio, dict, GigaSpeech.json inside it. # You can apply for the download credentials by following # https://github.com/SpeechColab/GigaSpeech#download # # - $dl_dir/lm # This directory contains the language model downloaded from # https://huggingface.co/wgb14/gigaspeech_lm # # - 3gram_pruned_1e7.arpa.gz # - 4gram.arpa.gz # - lexicon.txt # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 # 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Running prepare.sh" log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" # We assume that you have installed the git-lfs, if not, you could install it # using: `sudo apt-get install git-lfs && git-lfs install` [ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm git clone https://huggingface.co/wgb14/gigaspeech_lm $dl_dir/lm gunzip -c $dl_dir/lm/3gram_pruned_1e7.arpa.gz > $dl_dir/lm/3gram_pruned_1e7.arpa gunzip -c $dl_dir/lm/4gram.arpa.gz > $dl_dir/lm/4gram.arpa fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" [ ! -e $dl_dir/GigaSpeech ] && mkdir -p $dl_dir/GigaSpeech # If you have pre-downloaded it to /path/to/GigaSpeech, # you can create a symlink # # ln -svf /path/to/GigaSpeech $dl_dir/GigaSpeech # if [ ! -d $dl_dir/GigaSpeech/audio ] && [ ! -f $dl_dir/GigaSpeech.json ]; then # Check credentials. if [ ! -f $dl_dir/password ]; then echo -n "$0: Please apply for the download credentials by following" echo -n "https://github.com/SpeechColab/GigaSpeech#download" echo " and save it to $dl_dir/password." exit 1; fi PASSWORD=`cat $dl_dir/password 2>/dev/null` if [ -z "$PASSWORD" ]; then echo "$0: Error, $dl_dir/password is empty." exit 1; fi PASSWORD_MD5=`echo $PASSWORD | md5sum | cut -d ' ' -f 1` if [[ $PASSWORD_MD5 != "dfbf0cde1a3ce23749d8d81e492741b8" ]]; then echo "$0: Error, invalid $dl_dir/password." exit 1; fi # Download XL, DEV and TEST sets by default. # Support hosts: # 1. oss # 2. tsinghua # 3. speechocean # 4. magicdata lhotse download gigaspeech \ --host magicdata \ --subset DEV \ --subset TEST \ --subset XL \ $dl_dir/password $dl_dir/GigaSpeech fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -svf /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare GigaSpeech manifest (may take 15 minutes)" # We assume that you have downloaded the GigaSpeech corpus # to $dl_dir/GigaSpeech mkdir -p data/manifests lhotse prepare gigaspeech \ --subset XL \ --subset DEV \ --subset TEST \ -j $nj \ $dl_dir/GigaSpeech data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "State 3: Preprocess GigaSpeech manifest" if [ ! -f data/fbank/.preprocess_complete ]; then python3 ./local/preprocess_gigaspeech.py touch data/fbank/.preprocess_complete fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute features for DEV, TEST, L, M, S, and XS subsets of GigaSpeech." python3 ./local/compute_fbank_gigaspeech.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Split XL subset into pieces (may take 5 minutes)" num_per_split=50 split_dir=data/fbank/gigaspeech_XL_split if [ ! -f $split_dir/.split_completed ]; then lhotse split-lazy ./data/fbank/gigaspeech_cuts_XL_raw.jsonl.gz $split_dir $num_per_split touch $split_dir/.split_completed fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Compute features for XL" split_dir=data/fbank/gigaspeech_XL_split num_splits=$(find $split_dir -name "gigaspeech_cuts_XL_raw.*.jsonl.gz" | wc -l) python3 ./local/compute_fbank_gigaspeech_splits.py \ --num-workers 20 \ --batch-duration 600 \ --num-splits $num_splits \ --start $start \ --stop $stop fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" gunzip -c "data/manifests/gigaspeech_supervisions_XL.jsonl.gz" \ | jq '.text' \ | sed 's/"//g' \ > $lang_dir/transcript_words.txt # Delete utterances with garbage meta tags garbage_utterance_tags=" " for tag in $garbage_utterance_tags; do sed -i "/${tag}/d" $lang_dir/transcript_words.txt done # Delete punctuations in utterances punctuation_tags=" " for tag in $punctuation_tags; do sed -i "s/${tag}//g" $lang_dir/transcript_words.txt done # Ensure space only appears once sed -i 's/\t/ /g' $lang_dir/transcript_words.txt sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi done fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi fi