#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file reads the texts in given manifest and save the new cuts with phoneme tokens. """ import logging from pathlib import Path try: import tacotron_cleaner.cleaners except ModuleNotFoundError as ex: raise RuntimeError(f"{ex}\nPlease run\n pip install espnet_tts_frontend\n") from lhotse import CutSet, load_manifest from piper_phonemize import phonemize_espeak def prepare_tokens_ljspeech(): output_dir = Path("data/spectrogram") prefix = "ljspeech" suffix = "jsonl.gz" partition = "all" cut_set = load_manifest(output_dir / f"{prefix}_cuts_{partition}.{suffix}") new_cuts = [] for cut in cut_set: # Each cut only contains one supervision assert len(cut.supervisions) == 1, (len(cut.supervisions), cut) text = cut.supervisions[0].normalized_text # Text normalization text = tacotron_cleaner.cleaners.custom_english_cleaners(text) # Convert to phonemes tokens_list = phonemize_espeak(text, "en-us") tokens = [] for t in tokens_list: tokens.extend(t) cut.tokens = tokens new_cuts.append(cut) new_cut_set = CutSet.from_cuts(new_cuts) new_cut_set.to_file(output_dir / f"{prefix}_cuts_with_tokens_{partition}.{suffix}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) prepare_tokens_ljspeech()