#!/usr/bin/env bash set -eou pipefail stage=-1 stop_stage=100 use_gss=true # Use GSS-based enhancement with MDM setting # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/amicorpus # You can find audio and transcripts in this path. # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # # - $dl_dir/{LDC2004S13,LDC2005S13,LDC2004T19,LDC2005T19} # These contain the Fisher English audio and transcripts. We will # only use the transcripts as extra LM training data (similar to Kaldi). # dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data vocab_size=500 log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/amicorpus, # you can create a symlink # # ln -sfv /path/to/amicorpus $dl_dir/amicorpus # if [ ! -d $dl_dir/amicorpus ]; then lhotse download ami --mic ihm $dl_dir/amicorpus lhotse download ami --mic mdm $dl_dir/amicorpus fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare AMI manifests" # We assume that you have downloaded the AMI corpus # to $dl_dir/amicorpus. We perform text normalization for the transcripts. mkdir -p data/manifests for mic in ihm sdm mdm; do lhotse prepare ami --mic $mic --partition full-corpus-asr --normalize-text kaldi \ --max-words-per-segment 30 $dl_dir/amicorpus data/manifests/ done fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ] && [ $use_gss = true ]; then log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)" # We assume that you have installed the GSS package: https://github.com/desh2608/gss local/prepare_ami_gss.sh data/manifests exp/ami_gss fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank features for AMI" mkdir -p data/fbank python local/compute_fbank_ami.py log "Combine features from train splits" lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ gzip -c > data/manifests/cuts_train_all.jsonl.gz fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute fbank features for musan" mkdir -p data/fbank python local/compute_fbank_musan.py fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Dump transcripts for BPE model training." mkdir -p data/lm cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g')> data/lm/transcript_words.txt fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare BPE based lang" lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # Add special words to words.txt echo " 0" > $lang_dir/words.txt echo "!SIL 1" >> $lang_dir/words.txt echo " 2" >> $lang_dir/words.txt # Add regular words to words.txt cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt # Add remaining special word symbols expected by LM scripts. num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo " ${num_words}" >> $lang_dir/words.txt num_words=$(cat $lang_dir/words.txt | wc -l) echo "#0 ${num_words}" >> $lang_dir/words.txt ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript data/lm/transcript_words.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir fi fi