9 Commits

Author SHA1 Message Date
Teo Wen Shen
da87e7fc99
add weights_only=False to torch.load (#1984) 2025-07-10 15:27:08 +08:00
Desh Raj
107df3b115 apply black on all files 2022-11-17 09:42:17 -05:00
Fangjun Kuang
60317120ca
Revert "Apply new Black style changes" 2022-11-17 20:19:32 +08:00
Desh Raj
d110b04ad3 apply new black formatting to all files 2022-11-16 13:06:43 -05:00
Fangjun Kuang
aa7bae1ecd
fix decode.py for conformer_ctc in gigaspeech (#688) 2022-11-16 19:58:28 +08:00
Fangjun Kuang
d1f16a04bd
fix type hints for decode.py (#623) 2022-10-18 06:56:12 +08:00
Wei Kang
5c17255eec
Sort results to make it more convenient to compare decoding results (#522)
* Sort result to make it more convenient to compare decoding results

* Add cut_id to recognition results

* add cut_id to results for all recipes

* Fix torch.jit.script

* Fix comments

* Minor fixes

* Fix torch.jit.tracing for Pytorch version before v1.9.0
2022-08-12 07:12:50 +08:00
Guanbo Wang
8e3c89076e Bug fix (#352) 2022-05-07 08:10:54 +08:00
Wang, Guanbo
5fe58de43c
GigaSpeech recipe (#120)
* initial commit

* support download, data prep, and fbank

* on-the-fly feature extraction by default

* support BPE based lang

* support HLG for BPE

* small fix

* small fix

* chunked feature extraction by default

* Compute features for GigaSpeech by splitting the manifest.

* Fixes after review.

* Split manifests into 2000 pieces.

* set audio duration mismatch tolerance to 0.01

* small fix

* add conformer training recipe

* Add conformer.py without pre-commit checking

* lazy loading and use SingleCutSampler

* DynamicBucketingSampler

* use KaldifeatFbank to compute fbank for musan

* use pretrained language model and lexicon

* use 3gram to decode, 4gram to rescore

* Add decode.py

* Update .flake8

* Delete compute_fbank_gigaspeech.py

* Use BucketingSampler for valid and test dataloader

* Update params in train.py

* Use bpe_500

* update params in decode.py

* Decrease num_paths while CUDA OOM

* Added README

* Update RESULTS

* black

* Decrease num_paths while CUDA OOM

* Decode with post-processing

* Update results

* Remove lazy_load option

* Use default `storage_type`

* Keep the original tolerance

* Use split-lazy

* black

* Update pretrained model

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2022-04-14 16:07:22 +08:00