9 Commits

Author SHA1 Message Date
Yifan Yang
180c7c2b7a
Add UniqueLexicon for gigaspeech (#982) 2023-04-03 12:39:34 +08:00
Desh Raj
107df3b115 apply black on all files 2022-11-17 09:42:17 -05:00
Fangjun Kuang
60317120ca
Revert "Apply new Black style changes" 2022-11-17 20:19:32 +08:00
Desh Raj
d110b04ad3 apply new black formatting to all files 2022-11-16 13:06:43 -05:00
Fangjun Kuang
e18fa78c3a
Check that read_manifests_if_cached returns a non-empty dict. (#555) 2022-08-28 11:50:11 +08:00
Fangjun Kuang
ec69967584
Set overwrite=True when extracting features in batches. (#487) 2022-07-29 11:17:19 +08:00
Fangjun Kuang
f1abce72f8
Use jsonl for CutSet in the LibriSpeech recipe. (#397)
* Use jsonl for cutsets in the librispeech recipe.

* Use lazy cutset for all recipes.

* More fixes to use lazy CutSet.

* Remove force=True from logging to support Python < 3.8

* Minor fixes.

* Fix style issues.
2022-06-06 10:19:16 +08:00
Ewald Enzinger
8c5722de8c
[egs] Add prefix when reading manifests due to recent lhotse changes (#382)
* [egs] Add prefix when reading manifests due to recent lhotse changes

* Fix wenetspeech

* Fix style issues
2022-05-23 23:37:35 +08:00
Wang, Guanbo
5fe58de43c
GigaSpeech recipe (#120)
* initial commit

* support download, data prep, and fbank

* on-the-fly feature extraction by default

* support BPE based lang

* support HLG for BPE

* small fix

* small fix

* chunked feature extraction by default

* Compute features for GigaSpeech by splitting the manifest.

* Fixes after review.

* Split manifests into 2000 pieces.

* set audio duration mismatch tolerance to 0.01

* small fix

* add conformer training recipe

* Add conformer.py without pre-commit checking

* lazy loading and use SingleCutSampler

* DynamicBucketingSampler

* use KaldifeatFbank to compute fbank for musan

* use pretrained language model and lexicon

* use 3gram to decode, 4gram to rescore

* Add decode.py

* Update .flake8

* Delete compute_fbank_gigaspeech.py

* Use BucketingSampler for valid and test dataloader

* Update params in train.py

* Use bpe_500

* update params in decode.py

* Decrease num_paths while CUDA OOM

* Added README

* Update RESULTS

* black

* Decrease num_paths while CUDA OOM

* Decode with post-processing

* Update results

* Remove lazy_load option

* Use default `storage_type`

* Keep the original tolerance

* Use split-lazy

* black

* Update pretrained model

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2022-04-14 16:07:22 +08:00