- Introduce unified AMP helpers (create_grad_scaler, torch_autocast) to handle
deprecations in PyTorch ≥2.3.0
- Replace direct uses of torch.cuda.amp.GradScaler and torch.cuda.amp.autocast
with the new utilities across all training and inference scripts
- Update all torch.load calls to include weights_only=False for compatibility with
newer PyTorch versions
* support transformer LM
* show number of parameters during training
* update docstring
* testing files for ppl calculation
* add lm wrampper for rnn and transformer LM
* apply lm wrapper in lm shallow fusion
* small updates
* update decode.py to support LM fusion and LODR
* add export.py
* update CI and workflow
* update decoding results
* fix CI
* remove transformer LM from CI test
* Sort result to make it more convenient to compare decoding results
* Add cut_id to recognition results
* add cut_id to results for all recipes
* Fix torch.jit.script
* Fix comments
* Minor fixes
* Fix torch.jit.tracing for Pytorch version before v1.9.0
* Add fast_beam_search_nbest.
* Fix CI errors.
* Fix CI errors.
* More fixes.
* Small fixes.
* Support using log_add in LG decoding with fast_beam_search.
* Support LG decoding in pruned_transducer_stateless
* Support LG for pruned_transducer_stateless2.
* Support LG for fast beam search.
* Minor fixes.
* Copy files for editing.
* Add random combine from #229.
* Minor fixes.
* Pass model parameters from the command line.
* Fix warnings.
* Fix warnings.
* Update readme.
* Rename to avoid conflicts.
* Update results.
* Add CI for pruned_transducer_stateless5
* Typo fixes.
* Remove random combiner.
* Update decode.py and train.py to use periodically averaged models.
* Minor fixes.
* Revert to use random combiner.
* Update results.
* Minor fixes.