root
10504555c2
remove unnecessary files
2024-05-02 07:03:20 +09:00
Triplecq
ea1d9b20a8
update README & RESULTS
2024-05-01 17:59:40 -04:00
root
01325b58c8
remove unnecessary files
2024-05-01 23:03:01 +09:00
root
e5b3b631a8
export onnx model
2024-05-01 21:17:24 +09:00
root
92ab73e25e
update graph
2024-03-27 09:22:52 +09:00
root
72faff63d9
update graph
2024-03-27 09:08:33 +09:00
root
8229730454
update graph
2024-03-27 09:05:28 +09:00
root
7e0817ef25
update graph
2024-03-27 09:00:33 +09:00
root
9dc2a86754
update graph
2024-03-26 20:18:26 +09:00
root
3b36a67f07
update graph
2024-03-26 20:14:43 +09:00
root
1e25c96e42
update graph
2024-03-26 20:10:03 +09:00
root
baf6ebba90
delete graph
2024-03-26 20:09:11 +09:00
root
5e7db1afec
complete validation
2024-03-26 20:07:39 +09:00
root
456241bf61
update graph
2024-03-25 08:40:54 +09:00
root
03e8cfacca
validation test
2024-03-25 08:37:41 +09:00
root
860a6b27fa
complete exp on zipformer-L
2024-03-25 05:36:59 +09:00
Triplecq
5d94a19026
prepare for 1000h dataset
2024-01-24 11:33:36 -05:00
Triplecq
d864da4d65
validation scripts
2024-01-25 01:25:28 +09:00
Triplecq
f35fa8aa8f
add blank penalty in decoding script
2024-01-23 17:10:10 -05:00
Triplecq
a8e9dc2488
all combinations of epochs and avgs
2024-01-23 21:12:17 +09:00
Triplecq
77178c6311
comment out params related to the chunk size
2024-01-14 17:35:20 -05:00
Triplecq
7b6a89749d
customize decoding script
2024-01-14 17:29:22 -05:00
Triplecq
04fa9e3e8c
traning script completed
2024-01-15 07:06:14 +09:00
Triplecq
42c152f5cb
decrease learning-rate to solve the error: RuntimeError: grad_scale is too small, exiting: 5.820766091346741e-11
2024-01-14 12:12:15 -05:00
Triplecq
dc2d531540
customized recipes for rs
2024-01-14 22:28:53 +09:00
Triplecq
b1de6f266c
customized recipes for reazonspeech
2024-01-14 22:28:32 +09:00
Triplecq
1e6fe2eae1
restore
2024-01-14 08:05:49 -05:00
Triplecq
5e9a171b20
customize tranning script for rs
2024-01-14 07:45:33 -05:00
Triplecq
8eae6ec7d1
Add pruned_transducer_stateless2 from reazonspeech branch
2024-01-14 05:23:26 -05:00
Triplecq
af87726bf2
init zipformer recipe
2024-01-14 19:13:21 +09:00
Chen
2436597f7f
Zipformer recipe
2023-12-28 05:37:40 +09:00
Fujimoto Seiji
c1ce7ca9e3
Add first cut at ReazonSpeech recipe
...
This recipe is mostly based on egs/csj, but tweaked to the point that
can be run with ReazonSpeech corpus.
That being said, there are some big caveats:
* Currently the model quality is not very good. Actually, it is very
bad. I trained a model with 1000h corpus, and it resulted in >80%
CER on JSUT.
* The core issue seems that Zipformer is prone to ignore untterances
as sielent segments. It often produces an empty hypothesis despite
that the audio actually contains human voice.
* This issue is already reported in the upstream and not fully
resolved yet as of Dec 2023.
Signed-off-by: Fujimoto Seiji <fujimoto@ceptord.net>
2023-12-18 16:12:11 +09:00