Add num_features to train.py for training WSASR (#1528)

This commit is contained in:
Rezakh20 2024-03-05 12:10:30 +03:30 committed by GitHub
parent 242002e0bd
commit ff430b465f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -31,6 +31,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
--exp-dir conformer_ctc2/exp \
--lang-dir data/lang_bpe_200 \
--otc-token "<star>" \
--feature-dim 768 \
--allow-bypass-arc true \
--allow-self-loop-arc true \
--initial-bypass-weight -19 \
@ -159,6 +160,14 @@ def get_parser():
"lexicon.txt"
""",
)
parser.add_argument(
"--feature-dim",
type=int,
default=768,
help="""Number of features extracted in feature extraction stage.last dimension of feature vector.
80 when using fbank features and 768 or 1024 whn using wave2vec""",
)
parser.add_argument(
"--initial-lr",
@ -385,7 +394,6 @@ def get_params() -> AttributeDict:
"valid_interval": 800, # For the 100h subset, use 800
"alignment_interval": 25,
# parameters for conformer
"feature_dim": 768,
"subsampling_factor": 2,
"encoder_dim": 512,
"nhead": 8,