mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 08:34:19 +00:00
add necessary files to compute features
This commit is contained in:
parent
44d01195c0
commit
fef229e024
242
egs/libriheavy/ASR/local/compute_fbank_libriheavy.py
Executable file
242
egs/libriheavy/ASR/local/compute_fbank_libriheavy.py
Executable file
@ -0,0 +1,242 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the LibriSpeech dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from filter_cuts import filter_cuts
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to the bpe.model. If not None, we will remove short and
|
||||
long utterances before extracting features""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--fbank-dir",
|
||||
type=str,
|
||||
help="""Fbank output dir
|
||||
""",
|
||||
default="data/fbank",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of dataloading workers used for reading the audio.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch."
|
||||
"Determines batch size dynamically.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-splits",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The number of splits of the medium and large subset.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Process pieces starting from this number (inclusive). Only used in medium and large subset",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="Stop processing pieces until this number (exclusive). Only used in medium and large subset",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_libriheavy(
|
||||
bpe_model: Optional[str] = None,
|
||||
dataset: Optional[str] = None,
|
||||
perturb_speed: Optional[bool] = True,
|
||||
):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
if bpe_model:
|
||||
logging.info(f"Loading {bpe_model}")
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(bpe_model)
|
||||
|
||||
if dataset is None:
|
||||
dataset_parts = ("small",)
|
||||
else:
|
||||
dataset_parts = dataset.split(" ", -1)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for part in dataset_parts:
|
||||
output_cuts_path = output_dir / f"librilight_cuts_{part}.jsonl.gz"
|
||||
if output_cuts_path.exists():
|
||||
logging.info(f"{output_cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
input_cuts_path = src_dir / f"librilight_cuts_{part}.jsonl.gz"
|
||||
assert input_cuts_path.exists(), f"{input_cuts_path} does not exist!"
|
||||
logging.info(f"Loading {input_cuts_path}")
|
||||
cut_set = CutSet.from_file(input_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
|
||||
if bpe_model:
|
||||
cut_set = filter_cuts(cut_set, sp)
|
||||
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/libriheavy_feats_{part}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {output_cuts_path}")
|
||||
cut_set.to_file(output_cuts_path)
|
||||
|
||||
|
||||
def compute_fbank_libriheavy_splits(args):
|
||||
num_splits = args.num_splits
|
||||
dataset = args.dataset
|
||||
output_dir = f"{args.fbank_dir}/libriheavy_{dataset}_split"
|
||||
output_dir = Path(output_dir)
|
||||
assert output_dir.exists(), f"{output_dir} does not exist!"
|
||||
|
||||
num_digits = len(str(num_splits))
|
||||
|
||||
start = args.start
|
||||
stop = args.stop
|
||||
if stop < start:
|
||||
stop = num_splits
|
||||
|
||||
stop = min(stop, num_splits)
|
||||
|
||||
device = torch.device("cpu")
|
||||
# if torch.cuda.is_available():
|
||||
# device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
prefix = "librilight"
|
||||
|
||||
num_digits = 8 # num_digits is fixed by lhotse split-lazy
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing {idx}/{num_splits}")
|
||||
|
||||
cuts_path = output_dir / f"{prefix}_cuts_{dataset}.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
raw_cuts_path = output_dir / f"{prefix}_cuts_{dataset}_raw.{idx}.jsonl.gz"
|
||||
if not raw_cuts_path.is_file():
|
||||
logging.info(f"{raw_cuts_path} does not exist - skipping it")
|
||||
continue
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
if (output_dir / f"{prefix}_feats_{dataset}_{idx}.lca").exists():
|
||||
logging.info(f"Removing {output_dir}/{prefix}_feats_{dataset}_{idx}.lca")
|
||||
os.remove(output_dir / f"{prefix}_feats_{dataset}_{idx}.lca")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/{prefix}_feats_{dataset}_{idx}",
|
||||
num_workers=args.num_workers,
|
||||
batch_duration=args.batch_duration,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
logging.info("About to split cuts into smaller chunks.")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
logging.info(f"Saved to {cuts_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
compute_fbank_libriheavy_splits(args)
|
1
egs/libriheavy/ASR/local/filter_cuts.py
Symbolic link
1
egs/libriheavy/ASR/local/filter_cuts.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/filter_cuts.py
|
1
egs/libriheavy/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/libriheavy/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
1
egs/libriheavy/ASR/local/train_bpe_model.py
Symbolic link
1
egs/libriheavy/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/train_bpe_model.py
|
Loading…
x
Reference in New Issue
Block a user