Test pre-trained model in CI (#80)

* Add CI to run pre-trained models.

* Minor fixes.

* Install kaldifeat

* Install a CPU version of PyTorch.

* Fix CI errors.

* Disable decoder layers in pretrained.py if it is not used.

* Clone pre-trained model from GitHub.

* Minor fixes.

* Minor fixes.

* Minor fixes.
This commit is contained in:
Fangjun Kuang 2021-10-15 00:41:33 +08:00 committed by GitHub
parent 5401ce199d
commit fee1f84b20
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 150 additions and 11 deletions

106
.github/workflows/run-pretrained.yml vendored Normal file
View File

@ -0,0 +1,106 @@
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-pre-trained-conformer-ctc
on:
push:
branches:
- master
pull_request:
types: [labeled]
jobs:
run_pre_trained_conformer_ctc:
if: github.event.label.name == 'ready' || github.event_name == 'push'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.6, 3.7, 3.8, 3.9]
torch: ["1.8.1"]
k2-version: ["1.9.dev20210919"]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v1
with:
python-version: ${{ matrix.python-version }}
- name: Install Python dependencies
run: |
python3 -m pip install --upgrade pip pytest
pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/torch_stable.html
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
python3 -m pip install kaldifeat
# We are in ./icefall and there is a file: requirements.txt in it
pip install -r requirements.txt
- name: Install graphviz
shell: bash
run: |
python3 -m pip install -qq graphviz
sudo apt-get -qq install graphviz
- name: Download pre-trained model
shell: bash
run: |
sudo apt-get -qq install git-lfs tree sox
cd egs/librispeech/ASR
mkdir tmp
cd tmp
git lfs install
git clone https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
cd ..
tree tmp
soxi tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/*.flac
ls -lh tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/*.flac
- name: Run CTC decoding
shell: bash
run: |
export PYTHONPATH=$PWD:PYTHONPATH
cd egs/librispeech/ASR
./conformer_ctc/pretrained.py \
--num-classes 500 \
--checkpoint ./tmp/icefall-asr-conformer-ctc-bpe-500/exp/pretrained.pt \
--bpe-model ./tmp/icefall-asr-conformer-ctc-bpe-500/data/lang_bpe_500/bpe.model \
--method ctc-decoding \
./tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/1089-134686-0001.flac \
./tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/1221-135766-0001.flac \
./tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/1221-135766-0002.flac
- name: Run HLG decoding
shell: bash
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
cd egs/librispeech/ASR
./conformer_ctc/pretrained.py \
--num-classes 500 \
--checkpoint ./tmp/icefall-asr-conformer-ctc-bpe-500/exp/pretrained.pt \
--words-file ./tmp/icefall-asr-conformer-ctc-bpe-500/data/lang_bpe_500/words.txt \
--HLG ./tmp/icefall-asr-conformer-ctc-bpe-500/data/lang_bpe_500/HLG.pt \
./tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/1089-134686-0001.flac \
./tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/1221-135766-0001.flac \
./tmp/icefall-asr-conformer-ctc-bpe-500/test_wavs/1221-135766-0002.flac

View File

@ -84,3 +84,8 @@ jobs:
echo "lib_path: $lib_path" echo "lib_path: $lib_path"
export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH
pytest ./test pytest ./test
# runt tests for conformer ctc
cd egs/librispeech/ASR/conformer_ctc
pytest

View File

@ -166,6 +166,15 @@ def get_parser():
""", """,
) )
parser.add_argument(
"--num-classes",
type=int,
default=5000,
help="""
Vocab size in the BPE model.
""",
)
parser.add_argument( parser.add_argument(
"--eos-id", "--eos-id",
type=int, type=int,
@ -199,7 +208,6 @@ def get_params() -> AttributeDict:
"use_feat_batchnorm": True, "use_feat_batchnorm": True,
"feature_dim": 80, "feature_dim": 80,
"nhead": 8, "nhead": 8,
"num_classes": 5000,
"attention_dim": 512, "attention_dim": 512,
"num_decoder_layers": 6, "num_decoder_layers": 6,
# parameters for decoding # parameters for decoding
@ -242,7 +250,13 @@ def main():
args = parser.parse_args() args = parser.parse_args()
params = get_params() params = get_params()
if args.method != "attention-decoder":
# to save memory as the attention decoder
# will not be used
params.num_decoder_layers = 0
params.update(vars(args)) params.update(vars(args))
logging.info(f"{params}") logging.info(f"{params}")
device = torch.device("cpu") device = torch.device("cpu")
@ -264,7 +278,7 @@ def main():
) )
checkpoint = torch.load(args.checkpoint, map_location="cpu") checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"]) model.load_state_dict(checkpoint["model"], strict=False)
model.to(device) model.to(device)
model.eval() model.eval()
@ -305,7 +319,7 @@ def main():
logging.info("Use CTC decoding") logging.info("Use CTC decoding")
bpe_model = spm.SentencePieceProcessor() bpe_model = spm.SentencePieceProcessor()
bpe_model.load(params.bpe_model) bpe_model.load(params.bpe_model)
max_token_id = bpe_model.get_piece_size() - 1 max_token_id = params.num_classes - 1
H = k2.ctc_topo( H = k2.ctc_topo(
max_token=max_token_id, max_token=max_token_id,

View File

@ -96,6 +96,26 @@ def get_parser():
""", """,
) )
parser.add_argument(
"--exp-dir",
type=str,
default="conformer_ctc/exp",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe",
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
return parser return parser
@ -110,12 +130,6 @@ def get_params() -> AttributeDict:
Explanation of options saved in `params`: Explanation of options saved in `params`:
- exp_dir: It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
- lang_dir: It contains language related input files such as
"lexicon.txt"
- best_train_loss: Best training loss so far. It is used to select - best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is the model that has the lowest training loss. It is
updated during the training. updated during the training.
@ -166,8 +180,6 @@ def get_params() -> AttributeDict:
""" """
params = AttributeDict( params = AttributeDict(
{ {
"exp_dir": Path("conformer_ctc/exp"),
"lang_dir": Path("data/lang_bpe"),
"best_train_loss": float("inf"), "best_train_loss": float("inf"),
"best_valid_loss": float("inf"), "best_valid_loss": float("inf"),
"best_train_epoch": -1, "best_train_epoch": -1,
@ -638,6 +650,8 @@ def main():
parser = get_parser() parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser) LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args() args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
world_size = args.world_size world_size = args.world_size
assert world_size >= 1 assert world_size >= 1