update inference code

This commit is contained in:
root 2025-02-20 07:11:27 +00:00
parent f30a52a254
commit fea972364d
3 changed files with 412 additions and 18 deletions

View File

@ -22,6 +22,7 @@ import random
import time
from pathlib import Path
import datasets
import torch
import torch.nn.functional as F
import torchaudio
@ -36,6 +37,7 @@ from train import (
add_model_arguments,
get_model,
get_tokenizer,
insert_zeros_optimized,
load_F5_TTS_pretrained_checkpoint,
)
@ -78,7 +80,7 @@ def get_parser():
parser.add_argument(
"--manifest-file",
type=str,
default="/path/seed_tts_eval/seedtts_testset/zh/meta.lst",
default=None,
help="The manifest file in seed_tts_eval format",
)
@ -90,6 +92,21 @@ def get_parser():
)
parser.add_argument("-ss", "--swaysampling", default=-1, type=float)
parser.add_argument(
"--insert-zero",
action="store_true",
help="Insert zeros for CosyVoice",
)
parser.add_argument(
"--split-name",
type=str,
default="wenetspeech4tts",
choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
help="huggingface dataset split name",
)
add_model_arguments(parser)
return parser.parse_args()
@ -243,6 +260,344 @@ def get_inference_prompt(
return prompts_all
def get_inference_prompt_cosy_voice_huggingface(
dataset,
speed=1.0,
tokenizer="pinyin",
polyphone=True,
target_sample_rate=24000,
n_fft=1024,
win_length=1024,
n_mel_channels=100,
hop_length=256,
mel_spec_type="bigvgan",
target_rms=0.1,
use_truth_duration=False,
infer_batch_size=1,
num_buckets=200,
min_secs=3,
max_secs=40,
insert_zero=False,
):
prompts_all = []
min_tokens = min_secs * target_sample_rate // hop_length
max_tokens = max_secs * target_sample_rate // hop_length
batch_accum = [0] * num_buckets
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
[[] for _ in range(num_buckets)] for _ in range(6)
)
mel_spectrogram = MelSpec(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
)
for i in range(len(dataset)):
utt = dataset[i]["id"]
ref_audio_org, ref_sr = (
dataset[i]["prompt_audio"]["array"],
dataset[i]["prompt_audio"]["sampling_rate"],
)
ref_audio_org = torch.from_numpy(ref_audio_org).unsqueeze(0).float()
audio_tokens = dataset[i]["target_audio_cosy2_tokens"]
prompt_audio_tokens = dataset[i]["prompt_audio_cosy2_tokens"]
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio_org)))
if ref_rms < target_rms:
ref_audio_org = ref_audio_org * target_rms / ref_rms
if ref_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
ref_audio = resampler(ref_audio_org)
else:
ref_audio = ref_audio_org
input_tokens = prompt_audio_tokens + audio_tokens
if insert_zero:
input_tokens = insert_zeros_optimized(input_tokens)
text_list = input_tokens
# Duration, mel frame length
ref_mel_len = ref_audio.shape[-1] // hop_length
total_mel_len = len(input_tokens)
if not insert_zero:
total_mel_len = int(total_mel_len / 4 * 15)
# to mel spectrogram
ref_mel = mel_spectrogram(ref_audio)
ref_mel = ref_mel.squeeze(0)
# deal with batch
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
if total_mel_len > max_tokens:
print(
f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
)
continue
assert (
min_tokens <= total_mel_len <= max_tokens
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
bucket_i = math.floor(
(total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets
)
utts[bucket_i].append(utt)
ref_rms_list[bucket_i].append(ref_rms)
ref_mels[bucket_i].append(ref_mel)
ref_mel_lens[bucket_i].append(ref_mel_len)
total_mel_lens[bucket_i].append(total_mel_len)
# final_text_list[bucket_i].extend(text_list)
final_text_list[bucket_i].append(text_list)
batch_accum[bucket_i] += total_mel_len
if batch_accum[bucket_i] >= infer_batch_size:
prompts_all.append(
(
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
)
)
batch_accum[bucket_i] = 0
(
utts[bucket_i],
ref_rms_list[bucket_i],
ref_mels[bucket_i],
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
) = (
[],
[],
[],
[],
[],
[],
)
# add residual
for bucket_i, bucket_frames in enumerate(batch_accum):
if bucket_frames > 0:
prompts_all.append(
(
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
)
)
# not only leave easy work for last workers
random.seed(666)
random.shuffle(prompts_all)
return prompts_all
def get_inference_prompt_cosy_voice(
metainfo,
speed=1.0,
tokenizer="pinyin",
polyphone=True,
target_sample_rate=24000,
n_fft=1024,
win_length=1024,
n_mel_channels=100,
hop_length=256,
mel_spec_type="bigvgan",
target_rms=0.1,
use_truth_duration=False,
infer_batch_size=1,
num_buckets=200,
min_secs=3,
max_secs=40,
insert_zero=False,
):
import sys
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
sys.path.append("/workspace/CosyVoice")
from cosyvoice.cli.cosyvoice import CosyVoice2
cosyvoice = CosyVoice2(
"/workspace/CosyVoice2-0.5B", load_jit=False, load_trt=False, fp16=False
)
prompts_all = []
min_tokens = min_secs * target_sample_rate // hop_length
max_tokens = max_secs * target_sample_rate // hop_length
batch_accum = [0] * num_buckets
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
[[] for _ in range(num_buckets)] for _ in range(6)
)
mel_spectrogram = MelSpec(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
)
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(
metainfo, desc="Processing prompts..."
):
# Audio
ref_audio_org, ref_sr = torchaudio.load(prompt_wav)
# cosy voice
if ref_sr != 16000:
resampler = torchaudio.transforms.Resample(ref_sr, 16000)
ref_audio_16k = resampler(ref_audio_org)
else:
ref_audio_16k = ref_audio_org
audio_tokens, prompt_audio_tokens = cosyvoice.inference_speech_token(
gt_text, prompt_text, ref_audio_16k, stream=False
)
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio_org)))
if ref_rms < target_rms:
ref_audio_org = ref_audio_org * target_rms / ref_rms
assert (
ref_audio_org.shape[-1] > 5000
), f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
if ref_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
ref_audio = resampler(ref_audio_org)
else:
ref_audio = ref_audio_org
# Text
# if len(prompt_text[-1].encode("utf-8")) == 1:
# prompt_text = prompt_text + " "
# text = [prompt_text + gt_text]
# if tokenizer == "pinyin":
# text_list = convert_char_to_pinyin(text, polyphone=polyphone)
# else:
# text_list = text
# concat two tensors: prompt audio tokens with audio tokens --> shape 1, prompt_audio_tokens + audio_tokens
# prompt_audio_tokens shape 1, prompt_audio_tokens
# audio_tokens shape 1, audio_tokens
prompt_audio_tokens = prompt_audio_tokens.squeeze().cpu().tolist()
input_tokens = prompt_audio_tokens + audio_tokens
# convert it into a list
# input_tokens_list = input_tokens.squeeze().cpu().tolist()
if insert_zero:
input_tokens = insert_zeros_optimized(input_tokens)
text_list = input_tokens
# Duration, mel frame length
ref_mel_len = ref_audio.shape[-1] // hop_length
if use_truth_duration:
gt_audio, gt_sr = torchaudio.load(gt_wav)
if gt_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
gt_audio = resampler(gt_audio)
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
# # test vocoder resynthesis
# ref_audio = gt_audio
else:
ref_text_len = len(prompt_text.encode("utf-8"))
gen_text_len = len(gt_text.encode("utf-8"))
total_mel_len_compute = ref_mel_len + int(
ref_mel_len / ref_text_len * gen_text_len / speed
)
total_mel_len = len(input_tokens)
if not insert_zero:
total_mel_len = int(total_mel_len / 4 * 15)
print(
f"total_mel_len_compute: {total_mel_len_compute}, total_mel_len: {total_mel_len}"
)
# to mel spectrogram
ref_mel = mel_spectrogram(ref_audio)
ref_mel = ref_mel.squeeze(0)
# deal with batch
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
assert (
min_tokens <= total_mel_len <= max_tokens
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
bucket_i = math.floor(
(total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets
)
utts[bucket_i].append(utt)
ref_rms_list[bucket_i].append(ref_rms)
ref_mels[bucket_i].append(ref_mel)
ref_mel_lens[bucket_i].append(ref_mel_len)
total_mel_lens[bucket_i].append(total_mel_len)
# final_text_list[bucket_i].extend(text_list)
final_text_list[bucket_i].append(text_list)
batch_accum[bucket_i] += total_mel_len
if batch_accum[bucket_i] >= infer_batch_size:
prompts_all.append(
(
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
)
)
batch_accum[bucket_i] = 0
(
utts[bucket_i],
ref_rms_list[bucket_i],
ref_mels[bucket_i],
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
) = (
[],
[],
[],
[],
[],
[],
)
# add residual
for bucket_i, bucket_frames in enumerate(batch_accum):
if bucket_frames > 0:
prompts_all.append(
(
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
)
)
# not only leave easy work for last workers
random.seed(666)
random.shuffle(prompts_all)
return prompts_all
def padded_mel_batch(ref_mels):
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
padded_ref_mels = []
@ -275,9 +630,22 @@ def main():
accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"
if args.manifest_file:
metainfo = get_seedtts_testset_metainfo(args.manifest_file)
prompts_all = get_inference_prompt(
# prompts_all = get_inference_prompt(
# metainfo,
# speed=1.0,
# tokenizer="pinyin",
# target_sample_rate=24_000,
# n_mel_channels=100,
# hop_length=256,
# mel_spec_type="bigvgan",
# target_rms=0.1,
# use_truth_duration=False,
# infer_batch_size=1,
# )
prompts_all = get_inference_prompt_cosy_voice(
metainfo,
speed=1.0,
tokenizer="pinyin",
@ -288,6 +656,26 @@ def main():
target_rms=0.1,
use_truth_duration=False,
infer_batch_size=1,
insert_zero=args.insert_zero,
)
else:
dataset = datasets.load_dataset(
"yuekai/seed_tts_cosy2",
split=args.split_name,
trust_remote_code=True,
)
prompts_all = get_inference_prompt_cosy_voice_huggingface(
dataset,
speed=1.0,
tokenizer="pinyin",
target_sample_rate=24_000,
n_mel_channels=100,
hop_length=256,
mel_spec_type="bigvgan",
target_rms=0.1,
use_truth_duration=False,
infer_batch_size=1,
insert_zero=args.insert_zero,
)
vocoder = BigVGANInference.from_pretrained(
@ -324,6 +712,15 @@ def main():
ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)
# concat final_text_list
max_len = max([len(tokens) for tokens in final_text_list])
# pad tokens to the same length
for i, tokens in enumerate(final_text_list):
final_text_list[i] = torch.tensor(
tokens + [-1] * (max_len - len(tokens)), dtype=torch.long
)
final_text_list = torch.stack(final_text_list).to(device)
# Inference
with torch.inference_mode():
generated, _ = model.sample(

View File

@ -580,7 +580,7 @@ def prepare_input(batch: dict, device: torch.device):
semantic_tokens = []
for i in range(len(batch["tokens"])):
tokens = batch["tokens"][i]
tokens = insert_zeros_optimized(tokens)
# tokens = insert_zeros_optimized(tokens)
semantic_tokens.append(tokens)
# pad to the same length, B,T, with pad value -1
max_len = max([len(tokens) for tokens in semantic_tokens])

View File

@ -130,9 +130,6 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
data/fbank/${prefix}_cuts_validtest.jsonl.gz \
data/fbank/${prefix}_cuts_test.jsonl.gz
# zcat "data/fbank/${prefix}_cuts_${subset}.jsonl.gz" | head -n 100 | gzip > "data/fbank/${prefix}_cuts_${subset}_top100.jsonl.gz"
rm data/fbank/${prefix}_cuts_validtest.jsonl.gz
n=$(( $(gunzip -c data/fbank/${prefix}_cuts_${subset}.jsonl.gz | wc -l) - 800 ))