From fdba1cb6cac06be3296ef06e4f06084d4dc9c482 Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Tue, 3 Jan 2023 22:27:36 +0900 Subject: [PATCH] from local --- .../.data2vec_audio.py.swp | Bin 45056 -> 45056 bytes .../.train_adapter.py.swp | Bin 77824 -> 77824 bytes .../data2vec_audio.py | 4 ++-- 3 files changed, 2 insertions(+), 2 deletions(-) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index c167e442b410b681c5c60ed889bb5bca8ec48f88..28d79e7bfad094a147c06a6ef8fe39c7255788b6 100644 GIT binary patch delta 408 zcmWm7ze@rE0LAf_p4Me2f(-=)lC-2)Qd7{6p}|N<8e39mC<;2TU1uRPuBahw%7z+* zgQy5+O+`U8x>zCQTC<1Me)@Dv-Kx>50+dZn;qR$_%#PjU4l-E4Jc4-am29N(=jR9axWfsu{*<&qS;Pbe5k}i5ec=-?xIztO z6}$Z9lN?c5{(c$v6hV%Nes2WHi-hEaR*)&SdZiBpSiv%4sP#yf$ist; zG`_l}M?ByJ$JoLKvY5aSO#G&#Ha=0oH40e86ed$DDouQMNiDn}#5xwyk2gy?LK!*4 z@Y5;XqKZT8U>iBiV-7Z6JEVPN@n`abXFTB?d2>nfi3N;c01nzosfh;Oaf1p16p+Ij uJUD0?QOwv)gw50GaQ4oMhR>>2pUd{VP5;1mM`zseF)yrTylC*MVgCb3r$Mg( diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp index 89e814e59427dbb5a9d6d019f9291870ab373955..4582ad0fdbddbda797f5c84c0a2ce72a788f3de3 100644 GIT binary patch delta 36 qcmZp8z|!!5MJ&l6%+puFQqO<^2m}}yn02=#bM!QdZ53mDr4InMu?c$s delta 36 qcmZp8z|!!5MJ&l6%+puFQqO<^2m}}yF6nGZp4;6hwpEPrl|BH*T?*X* diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index ad7ba0400..7844bd64d 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -41,8 +41,8 @@ class TransformerEncoderAdapter(TransformerEncoder): super().__init__(args) self.adapters = ResidualAdapterModule() - for p in self.adapters.parameters(): - p.data /= 10. + #for p in self.adapters.parameters(): + # p.data /= 10. #p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) #p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/20.)