diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 090733575..f94443c1c 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 7f0c5cf79..729fe6eef 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -494,8 +494,10 @@ class Data2VecAudioModel(BaseFairseqModel): prompt = prompt.expand((features.size()[0], prompt.size()[0], prompt.size()[1])) features = torch.cat([prompt, features], dim=1) prompt_padding_mask = torch.zeros(prompt.size()[0], prompt.size()[1]).type(torch.BoolTensor).to(features.device) - padding_mask = torch.cat([prompt_padding_mask, padding_mask], dim=1) - print(padding_mask.size()) + try: padding_mask = torch.cat([prompt_padding_mask, padding_mask], dim=1) + except: + print(prompt_padding_mask.size()) + print(padding_mask.size()) features = self.layer_norm(features)