mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
Use LSTM layers for the encoder.
Need more tunings.
This commit is contained in:
parent
3174bebf07
commit
fcc22d3e91
21
egs/librispeech/ASR/transducer/README.md
Normal file
21
egs/librispeech/ASR/transducer/README.md
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
## Introduction
|
||||||
|
|
||||||
|
The encoder consists of Conformer layers in this folder. You can use the
|
||||||
|
following command to start the training:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2"
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
|
./transducer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 250 \
|
||||||
|
--lr-factor 2.5 \
|
||||||
|
```
|
@ -70,7 +70,7 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Hypothesis:
|
class Hypothesis:
|
||||||
ys: List[int] # the predicated sequences so far
|
ys: List[int] # the predicted sequences so far
|
||||||
log_prob: float # The log prob of ys
|
log_prob: float # The log prob of ys
|
||||||
|
|
||||||
# Optional decoder state. We assume it is LSTM for now,
|
# Optional decoder state. We assume it is LSTM for now,
|
||||||
|
@ -212,6 +212,24 @@ class LayerNormLSTMCell(nn.Module):
|
|||||||
if "layernorm" not in name:
|
if "layernorm" not in name:
|
||||||
nn.init.uniform_(weight, -stdv, stdv)
|
nn.init.uniform_(weight, -stdv, stdv)
|
||||||
|
|
||||||
|
if "bias_ih" in name or "bias_hh" in name:
|
||||||
|
# See the paper
|
||||||
|
# An Empirical Exploration of Recurrent Network Architectures
|
||||||
|
# https://proceedings.mlr.press/v37/jozefowicz15.pdf
|
||||||
|
#
|
||||||
|
# It recommends initializing the bias of the forget gate to
|
||||||
|
# a large value, such as 1 or 2. In PyTorch, there are two
|
||||||
|
# biases for the forget gate, we set both of them to 1 here.
|
||||||
|
#
|
||||||
|
# See also https://arxiv.org/pdf/1804.04849.pdf
|
||||||
|
assert weight.ndim == 1
|
||||||
|
# Layout of the bias:
|
||||||
|
# | in_gate | forget_gate | cell_gate | output_gate |
|
||||||
|
start = weight.numel() // 4
|
||||||
|
end = weight.numel() // 2
|
||||||
|
with torch.no_grad():
|
||||||
|
weight[start:end].fill_(1.0)
|
||||||
|
|
||||||
|
|
||||||
class LayerNormLSTMLayer(nn.Module):
|
class LayerNormLSTMLayer(nn.Module):
|
||||||
"""
|
"""
|
||||||
|
@ -23,7 +23,7 @@ To run this file, do:
|
|||||||
"""
|
"""
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from transducer.rnn import (
|
from rnn import (
|
||||||
LayerNormGRU,
|
LayerNormGRU,
|
||||||
LayerNormGRUCell,
|
LayerNormGRUCell,
|
||||||
LayerNormGRULayer,
|
LayerNormGRULayer,
|
||||||
@ -505,6 +505,28 @@ def test_layernorm_lstm_with_projection_forward(device="cpu"):
|
|||||||
assert_allclose(x.grad, x_clone.grad)
|
assert_allclose(x.grad, x_clone.grad)
|
||||||
|
|
||||||
|
|
||||||
|
def test_lstm_forget_gate_bias(device):
|
||||||
|
input_size = 2
|
||||||
|
hidden_size = 3
|
||||||
|
num_layers = 4
|
||||||
|
bias = True
|
||||||
|
|
||||||
|
lstm = LayerNormLSTM(
|
||||||
|
input_size=input_size,
|
||||||
|
hidden_size=hidden_size,
|
||||||
|
num_layers=num_layers,
|
||||||
|
bias=bias,
|
||||||
|
ln=nn.Identity,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
for name, weight in lstm.named_parameters():
|
||||||
|
if "bias_hh" in name or "bias_ih" in name:
|
||||||
|
start = weight.numel() // 4
|
||||||
|
end = weight.numel() // 2
|
||||||
|
expected = torch.ones(hidden_size).to(weight)
|
||||||
|
assert torch.all(torch.eq(weight[start:end], expected))
|
||||||
|
|
||||||
|
|
||||||
def test_layernorm_gru_cell_jit(device="cpu"):
|
def test_layernorm_gru_cell_jit(device="cpu"):
|
||||||
input_size = 10
|
input_size = 10
|
||||||
hidden_size = 20
|
hidden_size = 20
|
||||||
@ -741,6 +763,8 @@ def _test_lstm(device):
|
|||||||
test_layernorm_lstm_with_projection_jit(device)
|
test_layernorm_lstm_with_projection_jit(device)
|
||||||
test_layernorm_lstm_forward(device)
|
test_layernorm_lstm_forward(device)
|
||||||
test_layernorm_lstm_with_projection_forward(device)
|
test_layernorm_lstm_with_projection_forward(device)
|
||||||
|
#
|
||||||
|
test_lstm_forget_gate_bias(device)
|
||||||
|
|
||||||
|
|
||||||
def _test_gru(device):
|
def _test_gru(device):
|
||||||
|
@ -16,6 +16,20 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
|
./transducer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 250 \
|
||||||
|
--lr-factor 2.5
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
@ -88,7 +102,7 @@ def get_parser():
|
|||||||
default=0,
|
default=0,
|
||||||
help="""Resume training from from this epoch.
|
help="""Resume training from from this epoch.
|
||||||
If it is positive, it will load checkpoint from
|
If it is positive, it will load checkpoint from
|
||||||
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
transducer/exp/epoch-{start_epoch-1}.pt
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
19
egs/librispeech/ASR/transducer_lstm/README.md
Normal file
19
egs/librispeech/ASR/transducer_lstm/README.md
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
## Introduction
|
||||||
|
|
||||||
|
The encoder consists of LSTM layers in this folder. You can use the
|
||||||
|
following command to start the training:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2"
|
||||||
|
|
||||||
|
./transducer_lstm/train.py \
|
||||||
|
--world-size 3 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer_lstm/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--lr-factor 3
|
||||||
|
```
|
1
egs/librispeech/ASR/transducer_lstm/asr_datamodule.py
Symbolic link
1
egs/librispeech/ASR/transducer_lstm/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../transducer/asr_datamodule.py
|
212
egs/librispeech/ASR/transducer_lstm/beam_search.py
Normal file
212
egs/librispeech/ASR/transducer_lstm/beam_search.py
Normal file
@ -0,0 +1,212 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from model import Transducer
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||||
|
decoder_out, (h, c) = model.decoder(sos)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
hyp = []
|
||||||
|
max_u = 1000 # terminate after this number of steps
|
||||||
|
u = 0
|
||||||
|
|
||||||
|
while t < T and u < max_u:
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(current_encoder_out, decoder_out)
|
||||||
|
# logits is (1, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob is (1, 1, 1, vocab_size)
|
||||||
|
# TODO: Use logits.argmax()
|
||||||
|
y = log_prob.argmax()
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y.item())
|
||||||
|
y = y.reshape(1, 1)
|
||||||
|
decoder_out, (h, c) = model.decoder(y, (h, c))
|
||||||
|
u += 1
|
||||||
|
else:
|
||||||
|
t += 1
|
||||||
|
|
||||||
|
return hyp
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Hypothesis:
|
||||||
|
ys: List[int] # the predicted sequences so far
|
||||||
|
log_prob: float # The log prob of ys
|
||||||
|
|
||||||
|
# Optional decoder state. We assume it is LSTM for now,
|
||||||
|
# so the state is a tuple (h, c)
|
||||||
|
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
||||||
|
|
||||||
|
|
||||||
|
def beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 5,
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
|
||||||
|
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
sos_id = model.decoder.sos_id
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||||
|
decoder_out, (h, c) = model.decoder(sos)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
|
||||||
|
max_u = 20000 # terminate after this number of steps
|
||||||
|
u = 0
|
||||||
|
|
||||||
|
cache: Dict[
|
||||||
|
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
|
||||||
|
] = {}
|
||||||
|
|
||||||
|
while t < T and u < max_u:
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
|
# fmt: on
|
||||||
|
A = B
|
||||||
|
B = []
|
||||||
|
# for hyp in A:
|
||||||
|
# for h in A:
|
||||||
|
# if h.ys == hyp.ys[:-1]:
|
||||||
|
# # update the score of hyp
|
||||||
|
# decoder_input = torch.tensor(
|
||||||
|
# [h.ys[-1]], device=device
|
||||||
|
# ).reshape(1, 1)
|
||||||
|
# decoder_out, _ = model.decoder(
|
||||||
|
# decoder_input, h.decoder_state
|
||||||
|
# )
|
||||||
|
# logits = model.joiner(current_encoder_out, decoder_out)
|
||||||
|
# log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob = log_prob.squeeze()
|
||||||
|
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
|
||||||
|
|
||||||
|
while u < max_u:
|
||||||
|
y_star = max(A, key=lambda hyp: hyp.log_prob)
|
||||||
|
A.remove(y_star)
|
||||||
|
|
||||||
|
# Note: y_star.ys is unhashable, i.e., cannot be used
|
||||||
|
# as a key into a dict
|
||||||
|
cached_key = "_".join(map(str, y_star.ys))
|
||||||
|
|
||||||
|
if cached_key not in cache:
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[y_star.ys[-1]], device=device
|
||||||
|
).reshape(1, 1)
|
||||||
|
|
||||||
|
decoder_out, decoder_state = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
y_star.decoder_state,
|
||||||
|
)
|
||||||
|
cache[cached_key] = (decoder_out, decoder_state)
|
||||||
|
else:
|
||||||
|
decoder_out, decoder_state = cache[cached_key]
|
||||||
|
|
||||||
|
logits = model.joiner(current_encoder_out, decoder_out)
|
||||||
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob is (1, 1, 1, vocab_size)
|
||||||
|
log_prob = log_prob.squeeze()
|
||||||
|
# Now log_prob is (vocab_size,)
|
||||||
|
|
||||||
|
# If we choose blank here, add the new hypothesis to B.
|
||||||
|
# Otherwise, add the new hypothesis to A
|
||||||
|
|
||||||
|
# First, choose blank
|
||||||
|
skip_log_prob = log_prob[blank_id]
|
||||||
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
||||||
|
|
||||||
|
# ys[:] returns a copy of ys
|
||||||
|
new_y_star = Hypothesis(
|
||||||
|
ys=y_star.ys[:],
|
||||||
|
log_prob=new_y_star_log_prob,
|
||||||
|
# Caution: Use y_star.decoder_state here
|
||||||
|
decoder_state=y_star.decoder_state,
|
||||||
|
)
|
||||||
|
B.append(new_y_star)
|
||||||
|
|
||||||
|
# Second, choose other labels
|
||||||
|
for i, v in enumerate(log_prob.tolist()):
|
||||||
|
if i in (blank_id, sos_id):
|
||||||
|
continue
|
||||||
|
new_ys = y_star.ys + [i]
|
||||||
|
new_log_prob = y_star.log_prob + v
|
||||||
|
new_hyp = Hypothesis(
|
||||||
|
ys=new_ys,
|
||||||
|
log_prob=new_log_prob,
|
||||||
|
decoder_state=decoder_state,
|
||||||
|
)
|
||||||
|
A.append(new_hyp)
|
||||||
|
u += 1
|
||||||
|
# check whether B contains more than "beam" elements more probable
|
||||||
|
# than the most probable in A
|
||||||
|
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
|
||||||
|
B = sorted(
|
||||||
|
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
|
||||||
|
key=lambda hyp: hyp.log_prob,
|
||||||
|
reverse=True,
|
||||||
|
)
|
||||||
|
if len(B) >= beam:
|
||||||
|
B = B[:beam]
|
||||||
|
break
|
||||||
|
t += 1
|
||||||
|
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
|
||||||
|
ys = best_hyp.ys[1:] # [1:] to remove the blank
|
||||||
|
return ys
|
457
egs/librispeech/ASR/transducer_lstm/decode.py
Executable file
457
egs/librispeech/ASR/transducer_lstm/decode.py
Executable file
@ -0,0 +1,457 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./transducer_lstm/decode.py \
|
||||||
|
--epoch 14 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir ./transducer_lstm/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
(2) beam search
|
||||||
|
|
||||||
|
./transducer_lstm/decode.py \
|
||||||
|
--epoch 14 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir ./transducer_lstm/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from beam_search import beam_search, greedy_search
|
||||||
|
from decoder import Decoder
|
||||||
|
from encoder import LstmEncoder
|
||||||
|
from joiner import Joiner
|
||||||
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=77,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=55,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer_lstm/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=5,
|
||||||
|
help="Used only when --decoding-method is beam_search",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"encoder_hidden_size": 1024,
|
||||||
|
"num_encoder_layers": 4,
|
||||||
|
"proj_size": 512,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
# decoder params
|
||||||
|
"decoder_embedding_dim": 1024,
|
||||||
|
"num_decoder_layers": 4,
|
||||||
|
"decoder_hidden_dim": 512,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict):
|
||||||
|
encoder = LstmEncoder(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
hidden_size=params.encoder_hidden_size,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict):
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.decoder_embedding_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
sos_id=params.sos_id,
|
||||||
|
num_layers=params.num_decoder_layers,
|
||||||
|
hidden_dim=params.decoder_hidden_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict):
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict):
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
hyps = []
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 100
|
||||||
|
else:
|
||||||
|
log_interval = 2
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in ("greedy_search", "beam_search")
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
if params.decoding_method == "beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam_size}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||||
|
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_dl = [test_clean_dl, test_other_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
101
egs/librispeech/ASR/transducer_lstm/decoder.py
Normal file
101
egs/librispeech/ASR/transducer_lstm/decoder.py
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
# TODO(fangjun): Support switching between LSTM and GRU
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
blank_id: int,
|
||||||
|
sos_id: int,
|
||||||
|
num_layers: int,
|
||||||
|
hidden_dim: int,
|
||||||
|
output_dim: int,
|
||||||
|
embedding_dropout: float = 0.0,
|
||||||
|
rnn_dropout: float = 0.0,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
vocab_size:
|
||||||
|
Number of tokens of the modeling unit including blank.
|
||||||
|
embedding_dim:
|
||||||
|
Dimension of the input embedding.
|
||||||
|
blank_id:
|
||||||
|
The ID of the blank symbol.
|
||||||
|
sos_id:
|
||||||
|
The ID of the SOS symbol.
|
||||||
|
num_layers:
|
||||||
|
Number of LSTM layers.
|
||||||
|
hidden_dim:
|
||||||
|
Hidden dimension of LSTM layers.
|
||||||
|
output_dim:
|
||||||
|
Output dimension of the decoder.
|
||||||
|
embedding_dropout:
|
||||||
|
Dropout rate for the embedding layer.
|
||||||
|
rnn_dropout:
|
||||||
|
Dropout for LSTM layers.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.embedding = nn.Embedding(
|
||||||
|
num_embeddings=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
padding_idx=blank_id,
|
||||||
|
)
|
||||||
|
self.embedding_dropout = nn.Dropout(embedding_dropout)
|
||||||
|
# TODO(fangjun): Use layer normalized LSTM
|
||||||
|
self.rnn = nn.LSTM(
|
||||||
|
input_size=embedding_dim,
|
||||||
|
hidden_size=hidden_dim,
|
||||||
|
num_layers=num_layers,
|
||||||
|
batch_first=True,
|
||||||
|
dropout=rnn_dropout,
|
||||||
|
)
|
||||||
|
self.blank_id = blank_id
|
||||||
|
self.sos_id = sos_id
|
||||||
|
self.output_linear = nn.Linear(hidden_dim, output_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
y: torch.Tensor,
|
||||||
|
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||||
|
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
y:
|
||||||
|
A 2-D tensor of shape (N, U) with BOS prepended.
|
||||||
|
states:
|
||||||
|
A tuple of two tensors containing the states information of
|
||||||
|
LSTM layers in this decoder.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing:
|
||||||
|
|
||||||
|
- rnn_output, a tensor of shape (N, U, C)
|
||||||
|
- (h, c), containing the state information for LSTM layers.
|
||||||
|
Both are of shape (num_layers, N, C)
|
||||||
|
"""
|
||||||
|
embeding_out = self.embedding(y)
|
||||||
|
embeding_out = self.embedding_dropout(embeding_out)
|
||||||
|
rnn_out, (h, c) = self.rnn(embeding_out, states)
|
||||||
|
out = self.output_linear(rnn_out)
|
||||||
|
|
||||||
|
return out, (h, c)
|
115
egs/librispeech/ASR/transducer_lstm/encoder.py
Normal file
115
egs/librispeech/ASR/transducer_lstm/encoder.py
Normal file
@ -0,0 +1,115 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
|
||||||
|
|
||||||
|
|
||||||
|
class LstmEncoder(EncoderInterface):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
hidden_size: int,
|
||||||
|
output_dim: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
proj_size: int = 0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
real_hidden_size = proj_size if proj_size > 0 else hidden_size
|
||||||
|
assert (
|
||||||
|
subsampling_factor == 4
|
||||||
|
), "Only subsampling_factor==4 is supported at present"
|
||||||
|
|
||||||
|
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||||
|
# to the shape (N, T//subsampling_factor, d_model).
|
||||||
|
# That is, it does two things simultaneously:
|
||||||
|
# (1) subsampling: T -> T//subsampling_factor
|
||||||
|
# (2) embedding: num_features -> d_model
|
||||||
|
if vgg_frontend:
|
||||||
|
self.encoder_embed = VggSubsampling(num_features, real_hidden_size)
|
||||||
|
else:
|
||||||
|
self.encoder_embed = Conv2dSubsampling(
|
||||||
|
num_features, real_hidden_size
|
||||||
|
)
|
||||||
|
|
||||||
|
self.rnn = nn.LSTM(
|
||||||
|
input_size=hidden_size,
|
||||||
|
hidden_size=hidden_size,
|
||||||
|
num_layers=num_encoder_layers,
|
||||||
|
bias=True,
|
||||||
|
proj_size=proj_size,
|
||||||
|
batch_first=True,
|
||||||
|
dropout=dropout,
|
||||||
|
bidirectional=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder_output_layer = nn.Sequential(
|
||||||
|
nn.Dropout(p=dropout),
|
||||||
|
nn.Linear(real_hidden_size, output_dim),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames in
|
||||||
|
`x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing 2 tensors:
|
||||||
|
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
||||||
|
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||||
|
of frames in `logits` before padding.
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
|
||||||
|
# Caution: We assume the subsampling factor is 4!
|
||||||
|
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||||
|
assert x.size(1) == lengths.max().item(), (
|
||||||
|
x.size(1),
|
||||||
|
lengths.max(),
|
||||||
|
)
|
||||||
|
|
||||||
|
if False:
|
||||||
|
# It is commented out as DPP complains that not all parameters are
|
||||||
|
# used. Need more checks later for the reason.
|
||||||
|
#
|
||||||
|
# Caution: We assume the dataloader returns utterances with
|
||||||
|
# duration being sorted in decreasing order
|
||||||
|
packed_x = pack_padded_sequence(
|
||||||
|
input=x,
|
||||||
|
lengths=lengths.cpu(),
|
||||||
|
batch_first=True,
|
||||||
|
enforce_sorted=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
packed_rnn_out, _ = self.rnn(packed_x)
|
||||||
|
rnn_out, _ = pad_packed_sequence(packed_x, batch_first=True)
|
||||||
|
else:
|
||||||
|
rnn_out, _ = self.rnn(x)
|
||||||
|
|
||||||
|
logits = self.encoder_output_layer(rnn_out)
|
||||||
|
return logits, lengths
|
43
egs/librispeech/ASR/transducer_lstm/encoder_interface.py
Normal file
43
egs/librispeech/ASR/transducer_lstm/encoder_interface.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderInterface(nn.Module):
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||||
|
containing the input features.
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames
|
||||||
|
in `x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing two tensors:
|
||||||
|
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||||
|
containing unnormalized probabilities, i.e., the output of a
|
||||||
|
linear layer.
|
||||||
|
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||||
|
the number of frames in `encoder_out` before padding.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("Please implement it in a subclass")
|
55
egs/librispeech/ASR/transducer_lstm/joiner.py
Normal file
55
egs/librispeech/ASR/transducer_lstm/joiner.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Module):
|
||||||
|
def __init__(self, input_dim: int, output_dim: int):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.output_linear = nn.Linear(input_dim, output_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C).
|
||||||
|
decoder_out:
|
||||||
|
Output from the decoder. Its shape is (N, U, C).
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, U, C).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == decoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) == decoder_out.size(0)
|
||||||
|
assert encoder_out.size(2) == decoder_out.size(2)
|
||||||
|
|
||||||
|
encoder_out = encoder_out.unsqueeze(2)
|
||||||
|
# Now encoder_out is (N, T, 1, C)
|
||||||
|
|
||||||
|
decoder_out = decoder_out.unsqueeze(1)
|
||||||
|
# Now decoder_out is (N, 1, U, C)
|
||||||
|
|
||||||
|
logit = encoder_out + decoder_out
|
||||||
|
logit = F.relu(logit)
|
||||||
|
|
||||||
|
output = self.output_linear(logit)
|
||||||
|
|
||||||
|
return output
|
127
egs/librispeech/ASR/transducer_lstm/model.py
Normal file
127
egs/librispeech/ASR/transducer_lstm/model.py
Normal file
@ -0,0 +1,127 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Note we use `rnnt_loss` from torchaudio, which exists only in
|
||||||
|
torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
|
||||||
|
"""
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchaudio
|
||||||
|
import torchaudio.functional
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
|
||||||
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||||
|
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||||
|
"Please install a version >= 0.10.0"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Transducer(nn.Module):
|
||||||
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
"Sequence Transduction with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
decoder: nn.Module,
|
||||||
|
joiner: nn.Module,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, C) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
decoder:
|
||||||
|
It is the prediction network in the paper. Its input shape
|
||||||
|
is (N, U) and its output shape is (N, U, C). It should contain
|
||||||
|
two attributes: `blank_id` and `sos_id`.
|
||||||
|
joiner:
|
||||||
|
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||||
|
output shape is (N, T, U, C). Note that its output contains
|
||||||
|
unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(encoder, EncoderInterface)
|
||||||
|
assert hasattr(decoder, "blank_id")
|
||||||
|
assert hasattr(decoder, "sos_id")
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.decoder = decoder
|
||||||
|
self.joiner = joiner
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
y: k2.RaggedTensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
y:
|
||||||
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
|
utterance.
|
||||||
|
Returns:
|
||||||
|
Return the transducer loss.
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
assert y.num_axes == 2, y.num_axes
|
||||||
|
|
||||||
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
|
encoder_out, x_lens = self.encoder(x, x_lens)
|
||||||
|
assert torch.all(x_lens > 0)
|
||||||
|
|
||||||
|
# Now for the decoder, i.e., the prediction network
|
||||||
|
row_splits = y.shape.row_splits(1)
|
||||||
|
y_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
|
||||||
|
blank_id = self.decoder.blank_id
|
||||||
|
sos_id = self.decoder.sos_id
|
||||||
|
sos_y = add_sos(y, sos_id=sos_id)
|
||||||
|
|
||||||
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
|
decoder_out, _ = self.decoder(sos_y_padded)
|
||||||
|
|
||||||
|
logits = self.joiner(encoder_out, decoder_out)
|
||||||
|
|
||||||
|
# rnnt_loss requires 0 padded targets
|
||||||
|
# Note: y does not start with SOS
|
||||||
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
|
loss = torchaudio.functional.rnnt_loss(
|
||||||
|
logits=logits,
|
||||||
|
targets=y_padded,
|
||||||
|
logit_lengths=x_lens,
|
||||||
|
target_lengths=y_lens,
|
||||||
|
blank=blank_id,
|
||||||
|
reduction="sum",
|
||||||
|
)
|
||||||
|
|
||||||
|
return loss
|
104
egs/librispeech/ASR/transducer_lstm/noam.py
Normal file
104
egs/librispeech/ASR/transducer_lstm/noam.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class Noam(object):
|
||||||
|
"""
|
||||||
|
Implements Noam optimizer.
|
||||||
|
|
||||||
|
Proposed in
|
||||||
|
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
Modified from
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
iterable of parameters to optimize or dicts defining parameter groups
|
||||||
|
model_size:
|
||||||
|
attention dimension of the transformer model
|
||||||
|
factor:
|
||||||
|
learning rate factor
|
||||||
|
warm_step:
|
||||||
|
warmup steps
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params,
|
||||||
|
model_size: int = 256,
|
||||||
|
factor: float = 10.0,
|
||||||
|
warm_step: int = 25000,
|
||||||
|
weight_decay=0,
|
||||||
|
) -> None:
|
||||||
|
"""Construct an Noam object."""
|
||||||
|
self.optimizer = torch.optim.Adam(
|
||||||
|
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||||
|
)
|
||||||
|
self._step = 0
|
||||||
|
self.warmup = warm_step
|
||||||
|
self.factor = factor
|
||||||
|
self.model_size = model_size
|
||||||
|
self._rate = 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def param_groups(self):
|
||||||
|
"""Return param_groups."""
|
||||||
|
return self.optimizer.param_groups
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
"""Update parameters and rate."""
|
||||||
|
self._step += 1
|
||||||
|
rate = self.rate()
|
||||||
|
for p in self.optimizer.param_groups:
|
||||||
|
p["lr"] = rate
|
||||||
|
self._rate = rate
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
def rate(self, step=None):
|
||||||
|
"""Implement `lrate` above."""
|
||||||
|
if step is None:
|
||||||
|
step = self._step
|
||||||
|
return (
|
||||||
|
self.factor
|
||||||
|
* self.model_size ** (-0.5)
|
||||||
|
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||||
|
)
|
||||||
|
|
||||||
|
def zero_grad(self):
|
||||||
|
"""Reset gradient."""
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
"""Return state_dict."""
|
||||||
|
return {
|
||||||
|
"_step": self._step,
|
||||||
|
"warmup": self.warmup,
|
||||||
|
"factor": self.factor,
|
||||||
|
"model_size": self.model_size,
|
||||||
|
"_rate": self._rate,
|
||||||
|
"optimizer": self.optimizer.state_dict(),
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""Load state_dict."""
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if key == "optimizer":
|
||||||
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||||
|
else:
|
||||||
|
setattr(self, key, value)
|
1
egs/librispeech/ASR/transducer_lstm/subsampling.py
Symbolic link
1
egs/librispeech/ASR/transducer_lstm/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../transducer/subsampling.py
|
48
egs/librispeech/ASR/transducer_lstm/test_encoder.py
Executable file
48
egs/librispeech/ASR/transducer_lstm/test_encoder.py
Executable file
@ -0,0 +1,48 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./transducer_lstm/test_encoder.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
from encoder import LstmEncoder
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder():
|
||||||
|
encoder = LstmEncoder(
|
||||||
|
num_features=80,
|
||||||
|
hidden_size=1024,
|
||||||
|
proj_size=512,
|
||||||
|
output_dim=512,
|
||||||
|
subsampling_factor=4,
|
||||||
|
num_encoder_layers=12,
|
||||||
|
)
|
||||||
|
num_params = sum(p.numel() for p in encoder.parameters() if p.requires_grad)
|
||||||
|
print(num_params)
|
||||||
|
# 93979284
|
||||||
|
# 66427392
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_encoder()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
738
egs/librispeech/ASR/transducer_lstm/train.py
Executable file
738
egs/librispeech/ASR/transducer_lstm/train.py
Executable file
@ -0,0 +1,738 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang
|
||||||
|
# Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2"
|
||||||
|
|
||||||
|
./transducer_lstm/train.py \
|
||||||
|
--world-size 3 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer_lstm/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 400 \
|
||||||
|
--lr-factor 3
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from decoder import Decoder
|
||||||
|
from encoder import LstmEncoder
|
||||||
|
from joiner import Joiner
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import Transducer
|
||||||
|
from noam import Noam
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=78,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
transducer_lstm/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer_lstm/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr-factor",
|
||||||
|
type=float,
|
||||||
|
default=5.0,
|
||||||
|
help="The lr_factor for Noam optimizer",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
are saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- use_feat_batchnorm: Whether to do batch normalization for the
|
||||||
|
input features.
|
||||||
|
|
||||||
|
- attention_dim: Hidden dim for multi-head attention model.
|
||||||
|
|
||||||
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- warm_step: The warm_step for Noam optimizer.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 50,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 3000, # For the 100h subset, use 800
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"encoder_hidden_size": 1024,
|
||||||
|
"num_encoder_layers": 4,
|
||||||
|
"proj_size": 512,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
# decoder params
|
||||||
|
"decoder_embedding_dim": 1024,
|
||||||
|
"num_decoder_layers": 4,
|
||||||
|
"decoder_hidden_dim": 512,
|
||||||
|
# parameters for Noam
|
||||||
|
"weight_decay": 1e-6,
|
||||||
|
"warm_step": 80000, # For the 100h subset, use 8k
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict):
|
||||||
|
encoder = LstmEncoder(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
hidden_size=params.encoder_hidden_size,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict):
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.decoder_embedding_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
sos_id=params.sos_id,
|
||||||
|
num_layers=params.num_decoder_layers,
|
||||||
|
hidden_dim=params.decoder_hidden_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict):
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict):
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
y = sp.encode(texts, out_type=int)
|
||||||
|
y = k2.RaggedTensor(y).to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
loss = model(x=feature, x_lens=feature_lens, y=y)
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(
|
||||||
|
tb_writer, "train/tot_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
if params.full_libri is False:
|
||||||
|
params.valid_interval = 800
|
||||||
|
params.warm_step = 8000
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters() if p.requires_grad])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
logging.info("Using DDP")
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
optimizer = Noam(
|
||||||
|
model.parameters(),
|
||||||
|
model_size=params.encoder_hidden_size,
|
||||||
|
factor=params.lr_factor,
|
||||||
|
warm_step=params.warm_step,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints and "optimizer" in checkpoints:
|
||||||
|
logging.info("Loading optimizer state dict")
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
if params.full_libri:
|
||||||
|
train_cuts += librispeech.train_clean_360_cuts()
|
||||||
|
train_cuts += librispeech.train_other_500_cuts()
|
||||||
|
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
return 1.0 <= c.duration <= 20.0
|
||||||
|
|
||||||
|
num_in_total = len(train_cuts)
|
||||||
|
|
||||||
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
num_left = len(train_cuts)
|
||||||
|
num_removed = num_in_total - num_left
|
||||||
|
removed_percent = num_removed / num_in_total * 100
|
||||||
|
|
||||||
|
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||||
|
logging.info(f"After removing short and long utterances: {num_left}")
|
||||||
|
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||||
|
|
||||||
|
train_dl = librispeech.train_dataloaders(train_cuts)
|
||||||
|
|
||||||
|
valid_cuts = librispeech.dev_clean_cuts()
|
||||||
|
valid_cuts += librispeech.dev_other_cuts()
|
||||||
|
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
scan_pessimistic_batches_for_oom(
|
||||||
|
model=model,
|
||||||
|
train_dl=train_dl,
|
||||||
|
optimizer=optimizer,
|
||||||
|
sp=sp,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
cur_lr = optimizer._rate
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
sp=sp,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def scan_pessimistic_batches_for_oom(
|
||||||
|
model: nn.Module,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
params: AttributeDict,
|
||||||
|
):
|
||||||
|
from lhotse.dataset import find_pessimistic_batches
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||||
|
)
|
||||||
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||||
|
for criterion, cuts in batches.items():
|
||||||
|
batch = train_dl.dataset[cuts]
|
||||||
|
try:
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss, _ = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
except RuntimeError as e:
|
||||||
|
if "CUDA out of memory" in str(e):
|
||||||
|
logging.error(
|
||||||
|
"Your GPU ran out of memory with the current "
|
||||||
|
"max_duration setting. We recommend decreasing "
|
||||||
|
"max_duration and trying again.\n"
|
||||||
|
f"Failing criterion: {criterion} "
|
||||||
|
f"(={crit_values[criterion]}) ..."
|
||||||
|
)
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user