mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 10:44:19 +00:00
Implement beam search.
This commit is contained in:
parent
afec6b6cae
commit
fbc1bc3a6b
@ -1,3 +1,17 @@
|
|||||||
|
|
||||||
|
# Introduction
|
||||||
|
|
||||||
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/librispeech.html>
|
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/librispeech.html>
|
||||||
for how to run models in this recipe.
|
for how to run models in this recipe.
|
||||||
|
|
||||||
|
# Transducers
|
||||||
|
|
||||||
|
There are various folders containing the name `transducer` in this folder.
|
||||||
|
The following table lists the differences among them.
|
||||||
|
|
||||||
|
| | Encoder | Decoder |
|
||||||
|
|------------------------|-----------|--------------------|
|
||||||
|
| `transducer` | Conformer | LSTM |
|
||||||
|
| `transducer_stateless` | Conformer | Conv1d + Embedding |
|
||||||
|
|
||||||
|
|
||||||
|
@ -3,8 +3,9 @@
|
|||||||
### LibriSpeech BPE training results (RNN-T)
|
### LibriSpeech BPE training results (RNN-T)
|
||||||
|
|
||||||
#### 2021-12-17
|
#### 2021-12-17
|
||||||
|
Using commit `cb04c8a7509425ab45fae888b0ca71bbbd23f0de`.
|
||||||
|
|
||||||
RNN-T + Conformer encoder
|
RNN-T + Conformer encoder.
|
||||||
|
|
||||||
The best WER is
|
The best WER is
|
||||||
|
|
||||||
@ -12,7 +13,7 @@ The best WER is
|
|||||||
|-----|------------|------------|
|
|-----|------------|------------|
|
||||||
| WER | 3.16 | 7.71 |
|
| WER | 3.16 | 7.71 |
|
||||||
|
|
||||||
using `--epoch 26 --avg 12` during decoding with greedy search.
|
using `--epoch 26 --avg 12` with **greedy search**.
|
||||||
|
|
||||||
The training command to reproduce the above WER is:
|
The training command to reproduce the above WER is:
|
||||||
|
|
||||||
|
@ -15,8 +15,9 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
@ -35,25 +36,35 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
|||||||
|
|
||||||
# support only batch_size == 1 for now
|
# support only batch_size == 1 for now
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
sos = torch.tensor([blank_id] * context_size, device=device).reshape(
|
decoder_input = torch.tensor(
|
||||||
1, context_size
|
[blank_id] * context_size, device=device
|
||||||
)
|
).reshape(1, context_size)
|
||||||
decoder_out = model.decoder(sos, need_pad=False)
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
t = 0
|
t = 0
|
||||||
hyp = [blank_id] * context_size
|
hyp = [blank_id] * context_size
|
||||||
|
|
||||||
sym_per_frame = 0
|
# Maximum symbols per utterance.
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
max_sym_per_utt = 1000
|
max_sym_per_utt = 1000
|
||||||
|
|
||||||
|
# If at frame t, it decodes more than this number of symbols,
|
||||||
|
# it will move to the next step t+1
|
||||||
max_sym_per_frame = 3
|
max_sym_per_frame = 3
|
||||||
|
|
||||||
|
# symbols per frame
|
||||||
|
sym_per_frame = 0
|
||||||
|
|
||||||
|
# symbols per utterance decoded so far
|
||||||
|
sym_per_utt = 0
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
while t < T and sym_per_utt < max_sym_per_utt:
|
||||||
# fmt: off
|
# fmt: off
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
@ -83,18 +94,125 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Hypothesis:
|
class Hypothesis:
|
||||||
ys: List[int] # the predicted sequences so far
|
# The predicted tokens so far.
|
||||||
log_prob: float # The log prob of ys
|
# Newly predicted tokens are appended to `ys`.
|
||||||
|
ys: List[int]
|
||||||
|
|
||||||
# Optional decoder state. We assume it is LSTM for now,
|
# The log prob of ys
|
||||||
# so the state is a tuple (h, c)
|
log_prob: float
|
||||||
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
|
||||||
|
@property
|
||||||
|
def key(self) -> str:
|
||||||
|
"""Return a string representation of self.ys"""
|
||||||
|
return "_".join(map(str, self.ys))
|
||||||
|
|
||||||
|
|
||||||
|
class HypothesisList(object):
|
||||||
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = {}):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
data:
|
||||||
|
A dict of Hypotheses. Its key is its `value.key`.
|
||||||
|
"""
|
||||||
|
self._data = data
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self):
|
||||||
|
return self._data
|
||||||
|
|
||||||
|
# def add(self, ys: List[int], log_prob: float):
|
||||||
|
def add(self, hyp: Hypothesis):
|
||||||
|
"""Add a Hypothesis to `self`.
|
||||||
|
|
||||||
|
If `hyp` already exists in `self`, its probability is updated using
|
||||||
|
`log-sum-exp` with the existed one.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyp:
|
||||||
|
The hypothesis to be added.
|
||||||
|
"""
|
||||||
|
key = hyp.key
|
||||||
|
if key in self:
|
||||||
|
old_hyp = self._data[key]
|
||||||
|
old_hyp.log_prob = np.logaddexp(old_hyp.log_prob, hyp.log_prob)
|
||||||
|
else:
|
||||||
|
self._data[key] = hyp
|
||||||
|
|
||||||
|
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
||||||
|
"""Get the most probable hypothesis, i.e., the one with
|
||||||
|
the largest `log_prob`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
length_norm:
|
||||||
|
If True, the `log_prob` of a hypothesis is normalized by the
|
||||||
|
number of tokens in it.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if length_norm:
|
||||||
|
return max(
|
||||||
|
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
||||||
|
|
||||||
|
def remove(self, hyp: Hypothesis) -> None:
|
||||||
|
"""Remove a given hypothesis.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyp:
|
||||||
|
The hypothesis to be removed from `self`.
|
||||||
|
Note: It must be contained in `self`. Otherwise,
|
||||||
|
an exception is raised.
|
||||||
|
"""
|
||||||
|
key = hyp.key
|
||||||
|
assert key in self, f"{key} does not exist"
|
||||||
|
del self._data[key]
|
||||||
|
|
||||||
|
def filter(self, threshold: float) -> "HypothesisList":
|
||||||
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is not modified. Instead, a new HypothesisList is returned.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a new HypothesisList containing all hypotheses from `self`
|
||||||
|
that have `log_prob` being greater than the given `threshold`.
|
||||||
|
"""
|
||||||
|
ans = HypothesisList()
|
||||||
|
for key, hyp in self._data.items():
|
||||||
|
if hyp.log_prob > threshold:
|
||||||
|
ans.add(hyp) # shallow copy
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def topk(self, k: int) -> "HypothesisList":
|
||||||
|
"""Return the top-k hypothesis."""
|
||||||
|
hyps = list(self._data.items())
|
||||||
|
|
||||||
|
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
||||||
|
|
||||||
|
ans = HypothesisList(dict(hyps))
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def __contains__(self, key: str):
|
||||||
|
return key in self._data
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter(self._data.values())
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return len(self._data)
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
s = []
|
||||||
|
for key in self:
|
||||||
|
s.append(key)
|
||||||
|
return ", ".join(s)
|
||||||
|
|
||||||
|
|
||||||
def beam_search(
|
def beam_search(
|
||||||
model: Transducer,
|
model: Transducer,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
beam: int = 5,
|
beam: int = 4,
|
||||||
) -> List[int]:
|
) -> List[int]:
|
||||||
"""
|
"""
|
||||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||||
@ -116,110 +234,98 @@ def beam_search(
|
|||||||
# support only batch_size == 1 for now
|
# support only batch_size == 1 for now
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
sos_id = model.decoder.sos_id
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
decoder_input = torch.tensor(
|
||||||
decoder_out, (h, c) = model.decoder(sos)
|
[blank_id] * context_size, device=device
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
t = 0
|
t = 0
|
||||||
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
|
|
||||||
max_u = 20000 # terminate after this number of steps
|
|
||||||
u = 0
|
|
||||||
|
|
||||||
cache: Dict[
|
B = HypothesisList()
|
||||||
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
|
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
||||||
] = {}
|
|
||||||
|
|
||||||
while t < T and u < max_u:
|
max_sym_per_utt = 20000
|
||||||
|
|
||||||
|
sym_per_utt = 0
|
||||||
|
|
||||||
|
decoder_cache: Dict[str, torch.Tensor] = {}
|
||||||
|
|
||||||
|
while t < T and sym_per_utt < max_sym_per_utt:
|
||||||
# fmt: off
|
# fmt: off
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
# fmt: on
|
# fmt: on
|
||||||
A = B
|
A = B
|
||||||
B = []
|
B = HypothesisList()
|
||||||
# for hyp in A:
|
|
||||||
# for h in A:
|
|
||||||
# if h.ys == hyp.ys[:-1]:
|
|
||||||
# # update the score of hyp
|
|
||||||
# decoder_input = torch.tensor(
|
|
||||||
# [h.ys[-1]], device=device
|
|
||||||
# ).reshape(1, 1)
|
|
||||||
# decoder_out, _ = model.decoder(
|
|
||||||
# decoder_input, h.decoder_state
|
|
||||||
# )
|
|
||||||
# logits = model.joiner(current_encoder_out, decoder_out)
|
|
||||||
# log_prob = logits.log_softmax(dim=-1)
|
|
||||||
# log_prob = log_prob.squeeze()
|
|
||||||
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
|
|
||||||
|
|
||||||
while u < max_u:
|
joint_cache: Dict[str, torch.Tensor] = {}
|
||||||
y_star = max(A, key=lambda hyp: hyp.log_prob)
|
|
||||||
|
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
||||||
|
# of hypotheses in A
|
||||||
|
|
||||||
|
while True:
|
||||||
|
y_star = A.get_most_probable()
|
||||||
A.remove(y_star)
|
A.remove(y_star)
|
||||||
|
|
||||||
# Note: y_star.ys is unhashable, i.e., cannot be used
|
cached_key = y_star.key
|
||||||
# as a key into a dict
|
|
||||||
cached_key = "_".join(map(str, y_star.ys))
|
|
||||||
|
|
||||||
if cached_key not in cache:
|
if cached_key not in decoder_cache:
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[y_star.ys[-1]], device=device
|
[y_star.ys[-context_size:]], device=device
|
||||||
).reshape(1, 1)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out, decoder_state = model.decoder(
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
decoder_input,
|
decoder_cache[cached_key] = decoder_out
|
||||||
y_star.decoder_state,
|
|
||||||
)
|
|
||||||
cache[cached_key] = (decoder_out, decoder_state)
|
|
||||||
else:
|
else:
|
||||||
decoder_out, decoder_state = cache[cached_key]
|
decoder_out = decoder_cache[cached_key]
|
||||||
|
|
||||||
logits = model.joiner(current_encoder_out, decoder_out)
|
cached_key += f"-t-{t}"
|
||||||
log_prob = logits.log_softmax(dim=-1)
|
if cached_key not in joint_cache:
|
||||||
# log_prob is (1, 1, 1, vocab_size)
|
logits = model.joiner(current_encoder_out, decoder_out)
|
||||||
log_prob = log_prob.squeeze()
|
|
||||||
# Now log_prob is (vocab_size,)
|
|
||||||
|
|
||||||
# If we choose blank here, add the new hypothesis to B.
|
# TODO(fangjun): Ccale the blank posterior
|
||||||
# Otherwise, add the new hypothesis to A
|
|
||||||
|
|
||||||
# First, choose blank
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob is (1, 1, 1, vocab_size)
|
||||||
|
log_prob = log_prob.squeeze()
|
||||||
|
# Now log_prob is (vocab_size,)
|
||||||
|
joint_cache[cached_key] = log_prob
|
||||||
|
else:
|
||||||
|
log_prob = joint_cache[cached_key]
|
||||||
|
|
||||||
|
# First, process the blank symbol
|
||||||
skip_log_prob = log_prob[blank_id]
|
skip_log_prob = log_prob[blank_id]
|
||||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
||||||
|
|
||||||
# ys[:] returns a copy of ys
|
# ys[:] returns a copy of ys
|
||||||
new_y_star = Hypothesis(
|
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||||
ys=y_star.ys[:],
|
|
||||||
log_prob=new_y_star_log_prob,
|
|
||||||
# Caution: Use y_star.decoder_state here
|
|
||||||
decoder_state=y_star.decoder_state,
|
|
||||||
)
|
|
||||||
B.append(new_y_star)
|
|
||||||
|
|
||||||
# Second, choose other labels
|
# Second, process other non-blank labels
|
||||||
for i, v in enumerate(log_prob.tolist()):
|
values, indices = log_prob.topk(beam + 1)
|
||||||
if i in (blank_id, sos_id):
|
for i, v in zip(indices.tolist(), values.tolist()):
|
||||||
|
if i == blank_id:
|
||||||
continue
|
continue
|
||||||
new_ys = y_star.ys + [i]
|
new_ys = y_star.ys + [i]
|
||||||
new_log_prob = y_star.log_prob + v
|
new_log_prob = y_star.log_prob + v
|
||||||
new_hyp = Hypothesis(
|
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
||||||
ys=new_ys,
|
|
||||||
log_prob=new_log_prob,
|
# Check whether B contains more than "beam" elements more probable
|
||||||
decoder_state=decoder_state,
|
|
||||||
)
|
|
||||||
A.append(new_hyp)
|
|
||||||
u += 1
|
|
||||||
# check whether B contains more than "beam" elements more probable
|
|
||||||
# than the most probable in A
|
# than the most probable in A
|
||||||
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
|
A_most_probable = A.get_most_probable()
|
||||||
B = sorted(
|
|
||||||
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
|
kept_B = B.filter(A_most_probable.log_prob)
|
||||||
key=lambda hyp: hyp.log_prob,
|
|
||||||
reverse=True,
|
if len(kept_B) >= beam:
|
||||||
)
|
B = kept_B.topk(beam)
|
||||||
if len(B) >= beam:
|
|
||||||
B = B[:beam]
|
|
||||||
break
|
break
|
||||||
|
|
||||||
t += 1
|
t += 1
|
||||||
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
|
|
||||||
ys = best_hyp.ys[1:] # [1:] to remove the blank
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
return ys
|
return ys
|
||||||
|
Loading…
x
Reference in New Issue
Block a user