Fix CI tests. (#1974)

- Introduce unified AMP helpers (create_grad_scaler, torch_autocast) to handle 
  deprecations in PyTorch ≥2.3.0

- Replace direct uses of torch.cuda.amp.GradScaler and torch.cuda.amp.autocast 
  with the new utilities across all training and inference scripts

- Update all torch.load calls to include weights_only=False for compatibility with 
  newer PyTorch versions
This commit is contained in:
Fangjun Kuang 2025-07-01 13:47:55 +08:00 committed by GitHub
parent 71377d21cd
commit fba5e67d5e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
176 changed files with 881 additions and 501 deletions

View File

@ -17,7 +17,7 @@ concurrency:
jobs:
generate_build_matrix:
if: (github.repository_owner == 'csukuangfj' || github.repository_owner == 'k2-fsa') && (github.event.label.name == 'ready' || github.event_name == 'push' || github.event_name == 'aishell')
if: github.repository_owner == 'csukuangfj' || github.repository_owner == 'k2-fsa'
# see https://github.com/pytorch/pytorch/pull/50633
runs-on: ubuntu-latest
@ -31,8 +31,8 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py)
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
echo "::set-output name=matrix::${MATRIX}"
aishell:
needs: generate_build_matrix

View File

@ -30,8 +30,8 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py)
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
echo "::set-output name=matrix::${MATRIX}"
audioset:
@ -83,7 +83,7 @@ jobs:
ls -lh ./model-onnx/*
- name: Upload model to huggingface
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
@ -116,7 +116,7 @@ jobs:
rm -rf huggingface
- name: Prepare for release
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
shell: bash
run: |
d=sherpa-onnx-zipformer-audio-tagging-2024-04-09
@ -125,7 +125,7 @@ jobs:
ls -lh
- name: Release exported onnx models
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
uses: svenstaro/upload-release-action@v2
with:
file_glob: true

View File

@ -31,8 +31,8 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3")
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
echo "::set-output name=matrix::${MATRIX}"
baker_zh:
@ -84,43 +84,43 @@ jobs:
ls -lh
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: generated-test-files-${{ matrix.python-version }}-${{ matrix.torch-version }}
path: ./*.wav
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-2
path: ./model-steps-2.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-3
path: ./model-steps-3.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-4
path: ./model-steps-4.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-5
path: ./model-steps-5.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-6
path: ./model-steps-6.onnx
- name: Upload models to huggingface
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
shell: bash
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
@ -141,7 +141,7 @@ jobs:
popd
- name: Release exported onnx models
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
uses: svenstaro/upload-release-action@v2
with:
file_glob: true

View File

@ -29,8 +29,9 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py)
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
# MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10" --min-torch-version "2.6.0")
echo "::set-output name=matrix::${MATRIX}"
librispeech:
needs: generate_build_matrix

View File

@ -30,8 +30,8 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3")
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
echo "::set-output name=matrix::${MATRIX}"
ljspeech:
@ -83,13 +83,13 @@ jobs:
ls -lh
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: generated-test-files-${{ matrix.python-version }}-${{ matrix.torch-version }}
path: ./*.wav
- name: Release exported onnx models
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
@ -100,37 +100,37 @@ jobs:
tag: tts-models
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-2
path: ./model-steps-2.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-3
path: ./model-steps-3.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-4
path: ./model-steps-4.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-5
path: ./model-steps-5.onnx
- uses: actions/upload-artifact@v4
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
with:
name: step-6
path: ./model-steps-6.onnx
- name: Upload models to huggingface
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
shell: bash
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
@ -155,7 +155,7 @@ jobs:
popd
- name: Release exported onnx models
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
if: matrix.python-version == '3.10' && matrix.torch-version == '2.3.0'
uses: svenstaro/upload-release-action@v2
with:
file_glob: true

View File

@ -30,8 +30,8 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py)
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
echo "::set-output name=matrix::${MATRIX}"
test:
needs: generate_build_matrix

View File

@ -30,8 +30,9 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
python ./.github/scripts/docker/generate_build_matrix.py
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py)
python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10"
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10")
# MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --python-version "3.10" --min-torch-version "2.5.0")
echo "::set-output name=matrix::${MATRIX}"
yesno:
needs: generate_build_matrix

View File

@ -79,7 +79,13 @@ from icefall.checkpoint import save_checkpoint_with_global_batch_idx
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -638,7 +644,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -912,7 +918,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -72,7 +72,13 @@ from icefall.checkpoint import save_checkpoint_with_global_batch_idx
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -688,7 +694,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -989,7 +995,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -184,7 +184,7 @@ class Transducer(nn.Module):
lm = simple_lm_proj(decoder_out)
am = simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -219,7 +219,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -94,7 +94,13 @@ from icefall.checkpoint import (
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -797,7 +803,7 @@ def train_one_epoch(
aishell = is_aishell(batch["supervisions"]["cut"][0])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1202,7 +1208,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -94,6 +94,7 @@ from icefall.utils import (
filter_uneven_sized_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -809,7 +810,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1206,7 +1207,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -87,6 +87,7 @@ from icefall.utils import (
setup_logger,
str2bool,
tokenize_by_CJK_char,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -802,7 +803,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1202,7 +1203,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -81,7 +81,13 @@ from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.hooks import register_inf_check_hooks
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -812,7 +818,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1202,7 +1208,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -81,6 +81,7 @@ from icefall.utils import (
filter_uneven_sized_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -514,7 +515,7 @@ def compute_validation_loss(
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
tokenizer=tokenizer,
@ -608,7 +609,7 @@ def train_one_epoch(
)
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
tokenizer=tokenizer,

View File

@ -95,6 +95,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -910,7 +911,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1302,7 +1303,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -92,6 +92,7 @@ from icefall.utils import (
setup_logger,
str2bool,
tokenize_by_CJK_char,
torch_autocast,
)
@ -495,7 +496,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -895,7 +896,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -90,7 +90,13 @@ from icefall.checkpoint import (
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -734,7 +740,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1062,7 +1068,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -83,7 +83,13 @@ from icefall.checkpoint import (
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -727,7 +733,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
# print(batch["supervisions"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1034,7 +1040,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -79,7 +79,13 @@ from icefall.checkpoint import save_checkpoint_with_global_batch_idx
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -638,7 +644,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -912,7 +918,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -73,7 +73,13 @@ from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.hooks import register_inf_check_hooks
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -782,7 +788,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1127,7 +1133,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -71,7 +71,13 @@ from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.hooks import register_inf_check_hooks
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -773,7 +779,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1134,7 +1140,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -76,7 +76,13 @@ from icefall.checkpoint import (
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -1067,7 +1073,7 @@ def train_one_epoch(
batch_size = batch["inputs"].shape[0]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,

View File

@ -76,7 +76,13 @@ from icefall.checkpoint import (
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -1058,7 +1064,7 @@ def train_one_epoch(
batch_size = batch["inputs"].shape[0]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,

View File

@ -74,6 +74,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -799,7 +800,7 @@ def train_one_epoch(
num_samples += batch_size
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1148,7 +1149,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -73,6 +73,8 @@ def compute_fbank_baker_zh(num_jobs: int):
f_min=0,
f_max=8000,
)
if not torch.cuda.is_available():
config.device = "cpu"
prefix = "baker_zh"
suffix = "jsonl.gz"

View File

@ -88,6 +88,7 @@ from icefall.utils import (
filter_uneven_sized_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -825,7 +826,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1220,7 +1221,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -90,6 +90,7 @@ from icefall.utils import (
filter_uneven_sized_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -895,7 +896,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1293,7 +1294,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -81,7 +81,13 @@ from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.hooks import register_inf_check_hooks
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -840,7 +846,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1237,7 +1243,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -97,6 +97,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -969,7 +970,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1365,7 +1366,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -97,6 +97,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -604,7 +605,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -784,7 +785,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -83,7 +83,13 @@ from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.hooks import register_inf_check_hooks
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
LOG_EPS = math.log(1e-10)
@ -838,7 +844,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1245,7 +1251,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -77,7 +77,13 @@ from icefall.checkpoint import (
)
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -675,7 +681,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -944,7 +950,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -97,6 +97,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -958,7 +959,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1317,7 +1318,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -97,6 +97,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -961,7 +962,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1320,7 +1321,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -77,7 +77,13 @@ from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.hooks import register_inf_check_hooks
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -805,7 +811,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1196,7 +1202,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -92,6 +92,7 @@ from icefall.utils import (
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -942,7 +943,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1333,7 +1334,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -667,7 +667,9 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
torch.load(
f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False
)
)
assert HLG.requires_grad is False
@ -707,7 +709,9 @@ def main():
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
d = torch.load(
params.lm_dir / "G_4_gram.pt", map_location=device, weights_only=False
)
G = k2.Fsa.from_dict(d)
if params.method in [

View File

@ -271,7 +271,7 @@ def main():
use_feat_batchnorm=params.use_feat_batchnorm,
)
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
@ -351,7 +351,9 @@ def main():
"attention-decoder",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = k2.Fsa.from_dict(
torch.load(params.HLG, map_location="cpu", weights_only=False)
)
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
@ -362,7 +364,9 @@ def main():
"attention-decoder",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = k2.Fsa.from_dict(
torch.load(params.G, map_location="cpu", weights_only=False)
)
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = G.to(device)

View File

@ -774,7 +774,9 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
torch.load(
f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False
)
)
assert HLG.requires_grad is False
@ -814,7 +816,9 @@ def main():
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
d = torch.load(
params.lm_dir / "G_4_gram.pt", map_location=device, weights_only=False
)
G = k2.Fsa.from_dict(d)
if params.method in [

View File

@ -65,7 +65,6 @@ from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -84,9 +83,11 @@ from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
encode_supervisions,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -420,7 +421,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -629,7 +630,7 @@ def train_one_epoch(
scheduler: LRSchedulerType,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -676,7 +677,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -965,7 +966,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1036,7 +1037,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -868,7 +868,9 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
torch.load(
f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False
)
)
assert HLG.requires_grad is False
@ -907,7 +909,9 @@ def main():
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
d = torch.load(
params.lm_dir / "G_4_gram.pt", map_location=device, weights_only=False
)
G = k2.Fsa.from_dict(d)
if params.decoding_method == "whole-lattice-rescoring":

View File

@ -334,7 +334,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = k2.Fsa.from_dict(
torch.load(params.HLG, map_location="cpu", weights_only=False)
)
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
@ -345,7 +347,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = k2.Fsa.from_dict(
torch.load(params.G, map_location="cpu", weights_only=False)
)
G = G.to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose

View File

@ -290,7 +290,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
@ -386,7 +386,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = k2.Fsa.from_dict(
torch.load(params.HLG, map_location="cpu", weights_only=False)
)
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
@ -397,7 +399,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = k2.Fsa.from_dict(
torch.load(params.G, map_location="cpu", weights_only=False)
)
G = G.to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose

View File

@ -76,7 +76,6 @@ from lhotse.utils import fix_random_seed
from model import CTCModel
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -95,9 +94,11 @@ from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
encode_supervisions,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -493,7 +494,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -694,7 +695,7 @@ def train_one_epoch(
graph_compiler: Union[BpeCtcTrainingGraphCompiler, CtcTrainingGraphCompiler],
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -743,7 +744,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1004,7 +1005,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1073,7 +1074,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -574,7 +574,9 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
torch.load(
f"{params.lang_dir}/HLG.pt", map_location="cpu", weights_only=False
)
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
@ -609,7 +611,9 @@ def main():
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
d = torch.load(
params.lm_dir / "G_4_gram.pt", map_location="cpu", weights_only=False
)
G = k2.Fsa.from_dict(d).to(device)
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:

View File

@ -80,7 +80,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -93,7 +92,14 @@ from icefall.checkpoint import (
)
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -560,7 +566,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -727,7 +733,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -772,7 +778,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1002,7 +1008,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1071,7 +1077,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -80,7 +80,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -93,7 +92,14 @@ from icefall.checkpoint import (
)
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -560,7 +566,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -727,7 +733,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -772,7 +778,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1001,7 +1007,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1072,7 +1078,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -72,11 +72,11 @@ def compile_HLG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
max_token_id = max(lexicon.tokens)
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
H = k2.ctc_topo(max_token_id)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt", weights_only=False))
if Path(f"data/lm/{lm}.pt").is_file():
logging.info(f"Loading pre-compiled {lm}")
d = torch.load(f"data/lm/{lm}.pt")
d = torch.load(f"data/lm/{lm}.pt", weights_only=False)
G = k2.Fsa.from_dict(d)
else:
logging.info(f"Loading {lm}.fst.txt")

View File

@ -66,11 +66,11 @@ def compile_LG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
An FSA representing LG.
"""
lexicon = Lexicon(lang_dir)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt", weights_only=False))
if Path(f"data/lm/{lm}.pt").is_file():
logging.info(f"Loading pre-compiled {lm}")
d = torch.load(f"data/lm/{lm}.pt")
d = torch.load(f"data/lm/{lm}.pt", weights_only=False)
G = k2.Fsa.from_dict(d)
else:
logging.info(f"Loading {lm}.fst.txt")

View File

@ -750,7 +750,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -156,7 +156,7 @@ class Transducer(nn.Module):
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -192,7 +192,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -238,7 +238,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -66,7 +66,6 @@ from lstm import RNN
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -82,9 +81,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -521,7 +522,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -717,7 +718,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -763,7 +764,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1023,7 +1024,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1092,7 +1093,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -935,7 +935,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -195,7 +195,7 @@ class Transducer(nn.Module):
lm = simple_lm_proj(decoder_out)
am = simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -231,7 +231,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -241,7 +241,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -74,7 +74,6 @@ from lstm import RNN
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -90,9 +89,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -560,7 +561,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -772,7 +773,7 @@ def train_one_epoch(
giga_train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
rng: random.Random,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -848,7 +849,7 @@ def train_one_epoch(
libri = is_libri(batch["supervisions"]["cut"][0])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1176,7 +1177,7 @@ def run(rank, world_size, args):
else:
logging.info("Skip scan_pessimistic_batches_for_oom")
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1247,7 +1248,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -815,7 +815,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -239,7 +239,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -66,7 +66,6 @@ from lstm import RNN
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -82,9 +81,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -551,7 +552,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -747,7 +748,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -793,7 +794,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1067,7 +1068,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1136,7 +1137,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_.autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -21,7 +21,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -141,7 +141,7 @@ class Transducer(nn.Module):
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -176,7 +176,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -10,9 +10,11 @@ from typing import Optional, Tuple
import torch
from scaling import ScaledLinear
from torch import Tensor, nn
from torch.cuda.amp import GradScaler, custom_bwd, custom_fwd
from torch.cuda.amp import custom_bwd, custom_fwd
from torch_scheduled_sampling import sample_combined
from icefall.utils import create_grad_scaler, torch_autocast
# The main exports of this file are the module KnowledgeBaseLookup and the
# function create_knowledge_base.
@ -330,14 +332,14 @@ def _test_knowledge_base_lookup_autocast():
optimizer = Eve(m.parameters(), lr=0.005, eps=1.0e-04)
m = m.to(device)
scaler = GradScaler(enabled=True)
scaler = create_grad_scaler(enabled=True)
start = timeit.default_timer()
for epoch in range(150):
for n, (x, y) in enumerate(train_pairs):
y_out = m(x)
with torch.cuda.amp.autocast(enabled=True):
with torch_autocast(enabled=True):
loss = ((y_out - y) ** 2).mean() * 100.0
if n % 10 == 0 and epoch % 10 == 0:
print(f"Epoch {epoch}, batch {n}, loss {loss.item()}")

View File

@ -66,7 +66,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -76,7 +75,14 @@ from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.checkpoint import save_checkpoint_with_global_batch_idx
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
create_grad_scaler,
AttributeDict,
MetricsTracker,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -453,7 +459,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -608,7 +614,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
rank: int = 0,
@ -650,7 +656,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -868,7 +874,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -937,7 +943,7 @@ def scan_pessimistic_batches_for_oom(
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
# (i.e. are not remembered by the decaying-average in adam), because
# we want to avoid these params being subject to shrinkage in adam.
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -55,7 +55,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from noam import Noam
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -68,7 +67,14 @@ from icefall.checkpoint import (
)
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
setup_logger,
str2bool,
torch_autocast,
)
def add_model_arguments(parser: argparse.ArgumentParser):
@ -496,7 +502,7 @@ def save_checkpoint(
model_avg: Optional[nn.Module] = None,
optimizer: Optional[torch.optim.Optimizer] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, and training stats to file.
@ -650,7 +656,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -693,7 +699,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -939,7 +945,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1004,7 +1010,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -741,7 +741,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -754,7 +754,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -157,7 +157,7 @@ class Transducer(nn.Module):
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -193,7 +193,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -265,7 +265,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -78,7 +78,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -91,9 +90,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -523,7 +524,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -716,7 +717,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
rank: int = 0,
@ -759,7 +760,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1000,7 +1001,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 0 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1067,7 +1068,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -921,7 +921,7 @@ def load_ngram_LM(
if pt_file.is_file():
logging.info(f"Loading pre-compiled {pt_file}")
d = torch.load(pt_file, map_location=device)
d = torch.load(pt_file, map_location=device, weights_only=False)
G = k2.Fsa.from_dict(d)
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
@ -1101,7 +1101,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
elif params.decoding_method in [

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -195,7 +195,7 @@ class Transducer(nn.Module):
lm = simple_lm_proj(decoder_out)
am = simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -231,7 +231,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -274,7 +274,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -74,7 +74,6 @@ from librispeech import LibriSpeech
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -87,9 +86,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -546,7 +547,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -755,7 +756,7 @@ def train_one_epoch(
giga_train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
rng: random.Random,
scaler: GradScaler,
scaler: "GradScaler",
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
rank: int = 0,
@ -827,7 +828,7 @@ def train_one_epoch(
libri = is_libri(batch["supervisions"]["cut"][0])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1126,7 +1127,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 0 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1195,7 +1196,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -913,7 +913,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -80,7 +80,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -96,9 +95,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -548,7 +549,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -744,7 +745,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -789,7 +790,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1047,7 +1048,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1116,7 +1117,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -972,7 +972,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -238,7 +238,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -68,7 +68,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -84,9 +83,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -571,7 +572,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -768,7 +769,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -814,7 +815,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1078,7 +1079,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1147,7 +1148,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -185,7 +185,7 @@ class Transducer(nn.Module):
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -220,7 +220,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -80,7 +80,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
@ -96,9 +95,11 @@ from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
display_and_save_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -519,7 +520,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -736,7 +737,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -781,7 +782,7 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1039,7 +1040,7 @@ def run(rank, world_size, args):
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
scaler = GradScaler(enabled=params.use_fp16)
scaler = create_grad_scaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1108,7 +1109,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -348,7 +348,9 @@ class CodebookIndexExtractor:
num_codebooks=self.params.num_codebooks,
codebook_size=256,
)
quantizer.load_state_dict(torch.load(self.quantizer_file_path))
quantizer.load_state_dict(
torch.load(self.quantizer_file_path, weights_only=False)
)
quantizer.to(self.params.device)
return quantizer

View File

@ -289,7 +289,7 @@ def main():
logging.info("About to create model")
model = get_transducer_model(params)
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -910,7 +910,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -813,7 +813,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -66,7 +66,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, ScaledAdam
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from zipformer import Zipformer
@ -85,9 +84,11 @@ from icefall.hooks import register_inf_check_hooks
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
filter_uneven_sized_batch,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -635,7 +636,7 @@ def load_model_params(
"""
logging.info(f"Loading checkpoint from {ckpt}")
checkpoint = torch.load(ckpt, map_location="cpu")
checkpoint = torch.load(ckpt, map_location="cpu", weights_only=False)
# if module list is empty, load the whole model from ckpt
if not init_modules:
@ -678,7 +679,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -857,7 +858,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -903,7 +904,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1219,7 +1220,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
scaler = create_grad_scaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1319,7 +1320,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -23,7 +23,7 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import penalize_abs_values_gt
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -150,7 +150,7 @@ class Transducer(nn.Module):
# if self.training and random.random() < 0.25:
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -185,7 +185,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -247,7 +247,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -28,6 +28,8 @@ import torch.nn.functional as F
from torch import Tensor
from torch.nn import Embedding as ScaledEmbedding
from icefall.utils import torch_autocast
class ActivationBalancerFunction(torch.autograd.Function):
@staticmethod
@ -289,7 +291,7 @@ class SoftmaxFunction(torch.autograd.Function):
@staticmethod
def backward(ctx, ans_grad: Tensor):
(ans,) = ctx.saved_tensors
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
@ -669,7 +671,7 @@ class WhiteningPenaltyFunction(torch.autograd.Function):
def backward(ctx, x_grad: Tensor):
(x_orig,) = ctx.saved_tensors
with torch.enable_grad():
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
x_detached = x_orig.to(torch.float32).detach()
x_detached.requires_grad = True
@ -867,7 +869,7 @@ class MaxEig(torch.nn.Module):
):
return _no_op(x)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
eps = 1.0e-20
orig_x = x
x = x.to(torch.float32)

View File

@ -67,7 +67,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, ScaledAdam
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from zipformer import Zipformer
@ -86,10 +85,12 @@ from icefall.hooks import register_inf_check_hooks
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
filter_uneven_sized_batch,
setup_logger,
str2bool,
symlink_or_copy,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -581,7 +582,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -763,7 +764,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -809,7 +810,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1106,7 +1107,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
scaler = create_grad_scaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1206,7 +1207,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -44,7 +44,7 @@ from scaling import (
from torch import Tensor, nn
from icefall.dist import get_rank
from icefall.utils import is_jit_tracing, make_pad_mask
from icefall.utils import is_jit_tracing, make_pad_mask, torch_autocast
class Zipformer(EncoderInterface):
@ -1421,7 +1421,7 @@ class RelPositionMultiheadAttention(nn.Module):
bsz = n // num_heads
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
attn_weights = attn_weights.to(torch.float32)
attn_output = attn_output.to(torch.float32)
attn_weights_entropy = (

View File

@ -633,7 +633,9 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
torch.load(
f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False
)
)
assert HLG.requires_grad is False
@ -672,7 +674,9 @@ def main():
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
d = torch.load(
params.lm_dir / "G_4_gram.pt", map_location=device, weights_only=False
)
G = k2.Fsa.from_dict(d)
if params.decoding_method == "whole-lattice-rescoring":

View File

@ -786,7 +786,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

View File

@ -347,7 +347,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = k2.Fsa.from_dict(
torch.load(params.HLG, map_location="cpu", weights_only=False)
)
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
@ -358,7 +360,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = k2.Fsa.from_dict(
torch.load(params.G, map_location="cpu", weights_only=False)
)
G = G.to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose

View File

@ -22,7 +22,7 @@ import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from icefall.utils import add_sos
from icefall.utils import add_sos, torch_autocast
class Transducer(nn.Module):
@ -150,7 +150,7 @@ class Transducer(nn.Module):
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
@ -185,7 +185,7 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
with torch_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,

View File

@ -247,7 +247,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()

View File

@ -286,7 +286,7 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
@ -365,7 +365,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = k2.Fsa.from_dict(
torch.load(params.HLG, map_location="cpu", weights_only=False)
)
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
@ -376,7 +378,9 @@ def main():
"whole-lattice-rescoring",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = k2.Fsa.from_dict(
torch.load(params.G, map_location="cpu", weights_only=False)
)
G = G.to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose

View File

@ -67,7 +67,6 @@ from lhotse.utils import fix_random_seed
from model import Transducer
from optim import Eden, ScaledAdam
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from zipformer import Zipformer
@ -86,9 +85,11 @@ from icefall.hooks import register_inf_check_hooks
from icefall.utils import (
AttributeDict,
MetricsTracker,
create_grad_scaler,
encode_supervisions,
setup_logger,
str2bool,
torch_autocast,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -588,7 +589,7 @@ def save_checkpoint(
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
scaler: Optional["GradScaler"] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
@ -787,7 +788,7 @@ def train_one_epoch(
sp: spm.SentencePieceProcessor,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
scaler: "GradScaler",
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
@ -833,7 +834,7 @@ def train_one_epoch(
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
@ -1128,7 +1129,7 @@ def run(rank, world_size, args):
params=params,
)
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
scaler = create_grad_scaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
@ -1228,7 +1229,7 @@ def scan_pessimistic_batches_for_oom(
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
with torch_autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,

View File

@ -624,7 +624,9 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
torch.load(
f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False
)
)
assert HLG.requires_grad is False
@ -663,7 +665,9 @@ def main():
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
d = torch.load(
params.lm_dir / "G_4_gram.pt", map_location=device, weights_only=False
)
G = k2.Fsa.from_dict(d)
if params.decoding_method == "whole-lattice-rescoring":

View File

@ -808,7 +808,7 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
torch.load(lg_filename, map_location=device, weights_only=False)
)
decoding_graph.scores *= params.ngram_lm_scale
else:

Some files were not shown because too many files have changed in this diff Show More