mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Increase the size of the context in the RNN-T decoder. (#153)
This commit is contained in:
parent
cb04c8a750
commit
fb6a57e9e0
108
.github/workflows/run-pretrained-transducer-stateless.yml
vendored
Normal file
108
.github/workflows/run-pretrained-transducer-stateless.yml
vendored
Normal file
@ -0,0 +1,108 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-pre-trained-tranducer-stateless
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
jobs:
|
||||
run_pre_trained_transducer_stateless:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
torch: ["1.10.0"]
|
||||
torchaudio: ["0.10.0"]
|
||||
k2-version: ["1.9.dev20211101"]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip pytest
|
||||
# numpy 1.20.x does not support python 3.6
|
||||
pip install numpy==1.19
|
||||
pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||
|
||||
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||
python3 -m pip install kaldifeat
|
||||
# We are in ./icefall and there is a file: requirements.txt in it
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Install graphviz
|
||||
shell: bash
|
||||
run: |
|
||||
python3 -m pip install -qq graphviz
|
||||
sudo apt-get -qq install graphviz
|
||||
|
||||
- name: Download pre-trained model
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get -qq install git-lfs tree sox
|
||||
cd egs/librispeech/ASR
|
||||
mkdir tmp
|
||||
cd tmp
|
||||
git lfs install
|
||||
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22
|
||||
cd ..
|
||||
tree tmp
|
||||
soxi tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/*.wav
|
||||
ls -lh tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/*.wav
|
||||
|
||||
- name: Run greedy search decoding
|
||||
shell: bash
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:PYTHONPATH
|
||||
cd egs/librispeech/ASR
|
||||
./transducer_stateless/pretrained.py \
|
||||
--method greedy_search \
|
||||
--checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/exp/pretrained.pt \
|
||||
--bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/data/lang_bpe_500/bpe.model \
|
||||
./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/1089-134686-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/1221-135766-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/1221-135766-0002.wav
|
||||
|
||||
- name: Run beam search decoding
|
||||
shell: bash
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
cd egs/librispeech/ASR
|
||||
./transducer_stateless/pretrained.py \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
--checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/exp/pretrained.pt \
|
||||
--bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/data/lang_bpe_500/bpe.model \
|
||||
./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/1089-134686-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/1221-135766-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2021-12-22/test_wavs/1221-135766-0002.wav
|
2
.github/workflows/run-pretrained.yml
vendored
2
.github/workflows/run-pretrained.yml
vendored
@ -30,7 +30,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.6, 3.7, 3.8, 3.9]
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
torch: ["1.10.0"]
|
||||
torchaudio: ["0.10.0"]
|
||||
k2-version: ["1.9.dev20211101"]
|
||||
|
14
.github/workflows/test.yml
vendored
14
.github/workflows/test.yml
vendored
@ -32,7 +32,7 @@ jobs:
|
||||
# os: [ubuntu-18.04, macos-10.15]
|
||||
# disable macOS test for now.
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.6, 3.7, 3.8, 3.9]
|
||||
python-version: [3.7, 3.8]
|
||||
torch: ["1.8.0", "1.10.0"]
|
||||
torchaudio: ["0.8.0", "0.10.0"]
|
||||
k2-version: ["1.9.dev20211101"]
|
||||
@ -106,6 +106,12 @@ jobs:
|
||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
||||
cd ../transducer
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_stateless
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_lstm
|
||||
pytest -v -s
|
||||
fi
|
||||
|
||||
- name: Run tests
|
||||
@ -125,4 +131,10 @@ jobs:
|
||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
||||
cd ../transducer
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_stateless
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_lstm
|
||||
pytest -v -s
|
||||
fi
|
||||
|
25
README.md
25
README.md
@ -34,11 +34,12 @@ We do provide a Colab notebook for this recipe.
|
||||
|
||||
### LibriSpeech
|
||||
|
||||
We provide 3 models for this recipe:
|
||||
We provide 4 models for this recipe:
|
||||
|
||||
- [conformer CTC model][LibriSpeech_conformer_ctc]
|
||||
- [TDNN LSTM CTC model][LibriSpeech_tdnn_lstm_ctc]
|
||||
- [RNN-T Conformer model][LibriSpeech_transducer]
|
||||
- [Transducer: Conformer encoder + LSTM decoder][LibriSpeech_transducer]
|
||||
- [Transducer: Conformer encoder + Embedding decoder][LibriSpeech_transducer_stateless]
|
||||
|
||||
#### Conformer CTC Model
|
||||
|
||||
@ -62,9 +63,9 @@ The WER for this model is:
|
||||
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
|
||||
|
||||
|
||||
#### RNN-T Conformer model
|
||||
#### Transducer: Conformer encoder + LSTM decoder
|
||||
|
||||
Using Conformer as encoder.
|
||||
Using Conformer as encoder and LSTM as decoder.
|
||||
|
||||
The best WER with greedy search is:
|
||||
|
||||
@ -74,6 +75,21 @@ The best WER with greedy search is:
|
||||
|
||||
We provide a Colab notebook to run a pre-trained RNN-T conformer model: [](https://colab.research.google.com/drive/1_u6yK9jDkPwG_NLrZMN2XK7Aeq4suMO2?usp=sharing)
|
||||
|
||||
#### Transducer: Conformer encoder + Embedding decoder
|
||||
|
||||
Using Conformer as encoder. The decoder consists of 1 embedding layer
|
||||
and 1 convolutional layer.
|
||||
|
||||
The best WER using beam search with beam size 4 is:
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 2.92 | 7.37 |
|
||||
|
||||
Note: No auxiliary losses are used in the training and no LMs are used
|
||||
in the decoding.
|
||||
|
||||
We provide a Colab notebook to run a pre-trained transducer conformer + stateless decoder model: [](https://colab.research.google.com/drive/1Lm37sNajIpkV4HTzMDF7sn9l0JpfmekN?usp=sharing)
|
||||
|
||||
### Aishell
|
||||
|
||||
@ -143,6 +159,7 @@ Please see: [.
|
||||
We place an additional Conv1d layer right after the input embedding layer.
|
||||
|
@ -1,10 +1,69 @@
|
||||
## Results
|
||||
|
||||
### LibriSpeech BPE training results (RNN-T)
|
||||
### LibriSpeech BPE training results (Transducer)
|
||||
|
||||
#### 2021-12-22
|
||||
Conformer encoder + non-current decoder. The decoder
|
||||
contains only an embedding layer and a Conv1d (with kernel size 2).
|
||||
|
||||
The WERs are
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 2.99 | 7.52 | --epoch 20, --avg 10, --max-duration 100 |
|
||||
| beam search (beam size 2) | 2.95 | 7.43 | |
|
||||
| beam search (beam size 3) | 2.94 | 7.37 | |
|
||||
| beam search (beam size 4) | 2.92 | 7.37 | |
|
||||
| beam search (beam size 5) | 2.93 | 7.38 | |
|
||||
| beam search (beam size 8) | 2.92 | 7.38 | |
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer_stateless/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer_stateless/exp-full \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--lr-factor 3
|
||||
```
|
||||
|
||||
The tensorboard training log can be found at
|
||||
<https://tensorboard.dev/experiment/PsJ3LgkEQfOmzedAlYfVeg/#scalars&_smoothingWeight=0>
|
||||
|
||||
The decoding command is:
|
||||
```
|
||||
epoch=20
|
||||
avg=10
|
||||
|
||||
## greedy search
|
||||
./transducer_stateless/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir transducer_stateless/exp-full \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--max-duration 100
|
||||
|
||||
## beam search
|
||||
./transducer_stateless/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir transducer_stateless/exp-full \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
```
|
||||
|
||||
|
||||
#### 2021-12-17
|
||||
Using commit `cb04c8a7509425ab45fae888b0ca71bbbd23f0de`.
|
||||
|
||||
RNN-T + Conformer encoder
|
||||
Conformer encoder + LSTM decoder.
|
||||
|
||||
The best WER is
|
||||
|
||||
@ -12,7 +71,7 @@ The best WER is
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
|
||||
using `--epoch 26 --avg 12` during decoding with greedy search.
|
||||
using `--epoch 26 --avg 12` with **greedy search**.
|
||||
|
||||
The training command to reproduce the above WER is:
|
||||
|
||||
|
@ -27,11 +27,6 @@ from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
@ -115,6 +110,11 @@ class Transducer(nn.Module):
|
||||
# Note: y does not start with SOS
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
loss = torchaudio.functional.rnnt_loss(
|
||||
logits=logits,
|
||||
targets=y_padded,
|
||||
|
@ -27,11 +27,6 @@ from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
@ -115,6 +110,11 @@ class Transducer(nn.Module):
|
||||
# Note: y does not start with SOS
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
loss = torchaudio.functional.rnnt_loss(
|
||||
logits=logits,
|
||||
targets=y_padded,
|
||||
|
@ -15,8 +15,9 @@
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
@ -35,21 +36,35 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||
decoder_out = model.decoder(sos)
|
||||
decoder_input = torch.tensor(
|
||||
[blank_id] * context_size, device=device
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
T = encoder_out.size(1)
|
||||
t = 0
|
||||
hyp = []
|
||||
|
||||
sym_per_frame = 0
|
||||
sym_per_utt = 0
|
||||
hyp = [blank_id] * context_size
|
||||
|
||||
# Maximum symbols per utterance.
|
||||
max_sym_per_utt = 1000
|
||||
|
||||
# If at frame t, it decodes more than this number of symbols,
|
||||
# it will move to the next step t+1
|
||||
max_sym_per_frame = 3
|
||||
|
||||
# symbols per frame
|
||||
sym_per_frame = 0
|
||||
|
||||
# symbols per utterance decoded so far
|
||||
sym_per_utt = 0
|
||||
|
||||
while t < T and sym_per_utt < max_sym_per_utt:
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||
@ -57,14 +72,14 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
# logits is (1, 1, 1, vocab_size)
|
||||
|
||||
log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob is (1, 1, 1, vocab_size)
|
||||
# TODO: Use logits.argmax()
|
||||
y = log_prob.argmax()
|
||||
y = logits.argmax().item()
|
||||
if y != blank_id:
|
||||
hyp.append(y.item())
|
||||
y = y.reshape(1, 1)
|
||||
decoder_out = model.decoder(y)
|
||||
hyp.append(y)
|
||||
decoder_input = torch.tensor(
|
||||
[hyp[-context_size:]], device=device
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
sym_per_utt += 1
|
||||
sym_per_frame += 1
|
||||
@ -72,24 +87,135 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
||||
if y == blank_id or sym_per_frame > max_sym_per_frame:
|
||||
sym_per_frame = 0
|
||||
t += 1
|
||||
hyp = hyp[context_size:] # remove blanks
|
||||
|
||||
return hyp
|
||||
|
||||
|
||||
@dataclass
|
||||
class Hypothesis:
|
||||
ys: List[int] # the predicted sequences so far
|
||||
log_prob: float # The log prob of ys
|
||||
# The predicted tokens so far.
|
||||
# Newly predicted tokens are appended to `ys`.
|
||||
ys: List[int]
|
||||
|
||||
# Optional decoder state. We assume it is LSTM for now,
|
||||
# so the state is a tuple (h, c)
|
||||
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
||||
# The log prob of ys
|
||||
log_prob: float
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
"""Return a string representation of self.ys"""
|
||||
return "_".join(map(str, self.ys))
|
||||
|
||||
|
||||
class HypothesisList(object):
|
||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None):
|
||||
"""
|
||||
Args:
|
||||
data:
|
||||
A dict of Hypotheses. Its key is its `value.key`.
|
||||
"""
|
||||
if data is None:
|
||||
self._data = {}
|
||||
else:
|
||||
self._data = data
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
return self._data
|
||||
|
||||
# def add(self, ys: List[int], log_prob: float):
|
||||
def add(self, hyp: Hypothesis):
|
||||
"""Add a Hypothesis to `self`.
|
||||
|
||||
If `hyp` already exists in `self`, its probability is updated using
|
||||
`log-sum-exp` with the existed one.
|
||||
|
||||
Args:
|
||||
hyp:
|
||||
The hypothesis to be added.
|
||||
"""
|
||||
key = hyp.key
|
||||
if key in self:
|
||||
old_hyp = self._data[key]
|
||||
old_hyp.log_prob = np.logaddexp(old_hyp.log_prob, hyp.log_prob)
|
||||
else:
|
||||
self._data[key] = hyp
|
||||
|
||||
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
||||
"""Get the most probable hypothesis, i.e., the one with
|
||||
the largest `log_prob`.
|
||||
|
||||
Args:
|
||||
length_norm:
|
||||
If True, the `log_prob` of a hypothesis is normalized by the
|
||||
number of tokens in it.
|
||||
|
||||
"""
|
||||
if length_norm:
|
||||
return max(
|
||||
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
||||
)
|
||||
else:
|
||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
||||
|
||||
def remove(self, hyp: Hypothesis) -> None:
|
||||
"""Remove a given hypothesis.
|
||||
|
||||
Args:
|
||||
hyp:
|
||||
The hypothesis to be removed from `self`.
|
||||
Note: It must be contained in `self`. Otherwise,
|
||||
an exception is raised.
|
||||
"""
|
||||
key = hyp.key
|
||||
assert key in self, f"{key} does not exist"
|
||||
del self._data[key]
|
||||
|
||||
def filter(self, threshold: float) -> "HypothesisList":
|
||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||
|
||||
Caution:
|
||||
`self` is not modified. Instead, a new HypothesisList is returned.
|
||||
|
||||
Returns:
|
||||
Return a new HypothesisList containing all hypotheses from `self`
|
||||
that have `log_prob` being greater than the given `threshold`.
|
||||
"""
|
||||
ans = HypothesisList()
|
||||
for key, hyp in self._data.items():
|
||||
if hyp.log_prob > threshold:
|
||||
ans.add(hyp) # shallow copy
|
||||
return ans
|
||||
|
||||
def topk(self, k: int) -> "HypothesisList":
|
||||
"""Return the top-k hypothesis."""
|
||||
hyps = list(self._data.items())
|
||||
|
||||
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
||||
|
||||
ans = HypothesisList(dict(hyps))
|
||||
return ans
|
||||
|
||||
def __contains__(self, key: str):
|
||||
return key in self._data
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self._data.values())
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self._data)
|
||||
|
||||
def __str__(self) -> str:
|
||||
s = []
|
||||
for key in self:
|
||||
s.append(key)
|
||||
return ", ".join(s)
|
||||
|
||||
|
||||
def beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 5,
|
||||
beam: int = 4,
|
||||
) -> List[int]:
|
||||
"""
|
||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||
@ -111,110 +237,98 @@ def beam_search(
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = model.decoder.sos_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||
decoder_out, (h, c) = model.decoder(sos)
|
||||
decoder_input = torch.tensor(
|
||||
[blank_id] * context_size, device=device
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
T = encoder_out.size(1)
|
||||
t = 0
|
||||
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
|
||||
max_u = 20000 # terminate after this number of steps
|
||||
u = 0
|
||||
|
||||
cache: Dict[
|
||||
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
|
||||
] = {}
|
||||
B = HypothesisList()
|
||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
||||
|
||||
while t < T and u < max_u:
|
||||
max_sym_per_utt = 20000
|
||||
|
||||
sym_per_utt = 0
|
||||
|
||||
decoder_cache: Dict[str, torch.Tensor] = {}
|
||||
|
||||
while t < T and sym_per_utt < max_sym_per_utt:
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||
# fmt: on
|
||||
A = B
|
||||
B = []
|
||||
# for hyp in A:
|
||||
# for h in A:
|
||||
# if h.ys == hyp.ys[:-1]:
|
||||
# # update the score of hyp
|
||||
# decoder_input = torch.tensor(
|
||||
# [h.ys[-1]], device=device
|
||||
# ).reshape(1, 1)
|
||||
# decoder_out, _ = model.decoder(
|
||||
# decoder_input, h.decoder_state
|
||||
# )
|
||||
# logits = model.joiner(current_encoder_out, decoder_out)
|
||||
# log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob = log_prob.squeeze()
|
||||
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
|
||||
B = HypothesisList()
|
||||
|
||||
while u < max_u:
|
||||
y_star = max(A, key=lambda hyp: hyp.log_prob)
|
||||
joint_cache: Dict[str, torch.Tensor] = {}
|
||||
|
||||
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
||||
# of hypotheses in A
|
||||
|
||||
while True:
|
||||
y_star = A.get_most_probable()
|
||||
A.remove(y_star)
|
||||
|
||||
# Note: y_star.ys is unhashable, i.e., cannot be used
|
||||
# as a key into a dict
|
||||
cached_key = "_".join(map(str, y_star.ys))
|
||||
cached_key = y_star.key
|
||||
|
||||
if cached_key not in cache:
|
||||
if cached_key not in decoder_cache:
|
||||
decoder_input = torch.tensor(
|
||||
[y_star.ys[-1]], device=device
|
||||
).reshape(1, 1)
|
||||
[y_star.ys[-context_size:]], device=device
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out, decoder_state = model.decoder(
|
||||
decoder_input,
|
||||
y_star.decoder_state,
|
||||
)
|
||||
cache[cached_key] = (decoder_out, decoder_state)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_cache[cached_key] = decoder_out
|
||||
else:
|
||||
decoder_out, decoder_state = cache[cached_key]
|
||||
decoder_out = decoder_cache[cached_key]
|
||||
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob is (1, 1, 1, vocab_size)
|
||||
log_prob = log_prob.squeeze()
|
||||
# Now log_prob is (vocab_size,)
|
||||
cached_key += f"-t-{t}"
|
||||
if cached_key not in joint_cache:
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
|
||||
# If we choose blank here, add the new hypothesis to B.
|
||||
# Otherwise, add the new hypothesis to A
|
||||
# TODO(fangjun): Ccale the blank posterior
|
||||
|
||||
# First, choose blank
|
||||
log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob is (1, 1, 1, vocab_size)
|
||||
log_prob = log_prob.squeeze()
|
||||
# Now log_prob is (vocab_size,)
|
||||
joint_cache[cached_key] = log_prob
|
||||
else:
|
||||
log_prob = joint_cache[cached_key]
|
||||
|
||||
# First, process the blank symbol
|
||||
skip_log_prob = log_prob[blank_id]
|
||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
||||
|
||||
# ys[:] returns a copy of ys
|
||||
new_y_star = Hypothesis(
|
||||
ys=y_star.ys[:],
|
||||
log_prob=new_y_star_log_prob,
|
||||
# Caution: Use y_star.decoder_state here
|
||||
decoder_state=y_star.decoder_state,
|
||||
)
|
||||
B.append(new_y_star)
|
||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||
|
||||
# Second, choose other labels
|
||||
for i, v in enumerate(log_prob.tolist()):
|
||||
if i in (blank_id, sos_id):
|
||||
# Second, process other non-blank labels
|
||||
values, indices = log_prob.topk(beam + 1)
|
||||
for i, v in zip(indices.tolist(), values.tolist()):
|
||||
if i == blank_id:
|
||||
continue
|
||||
new_ys = y_star.ys + [i]
|
||||
new_log_prob = y_star.log_prob + v
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys,
|
||||
log_prob=new_log_prob,
|
||||
decoder_state=decoder_state,
|
||||
)
|
||||
A.append(new_hyp)
|
||||
u += 1
|
||||
# check whether B contains more than "beam" elements more probable
|
||||
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
||||
|
||||
# Check whether B contains more than "beam" elements more probable
|
||||
# than the most probable in A
|
||||
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
|
||||
B = sorted(
|
||||
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
|
||||
key=lambda hyp: hyp.log_prob,
|
||||
reverse=True,
|
||||
)
|
||||
if len(B) >= beam:
|
||||
B = B[:beam]
|
||||
A_most_probable = A.get_most_probable()
|
||||
|
||||
kept_B = B.filter(A_most_probable.log_prob)
|
||||
|
||||
if len(kept_B) >= beam:
|
||||
B = kept_B.topk(beam)
|
||||
break
|
||||
|
||||
t += 1
|
||||
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
|
||||
ys = best_hyp.ys[1:] # [1:] to remove the blank
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
return ys
|
||||
|
@ -24,15 +24,15 @@ Usage:
|
||||
--exp-dir ./transducer_stateless/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
(2) beam search
|
||||
|
||||
(2) beam search
|
||||
./transducer_stateless/decode.py \
|
||||
--epoch 14 \
|
||||
--avg 7 \
|
||||
--exp-dir ./transducer_stateless/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 8
|
||||
--beam-size 4
|
||||
"""
|
||||
|
||||
|
||||
@ -70,14 +70,14 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=77,
|
||||
default=20,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=55,
|
||||
default=10,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
@ -110,7 +110,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=5,
|
||||
default=4,
|
||||
help="Used only when --decoding-method is beam_search",
|
||||
)
|
||||
|
||||
@ -130,7 +130,8 @@ def get_params() -> AttributeDict:
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# decoder params
|
||||
# parameters for decoder
|
||||
"context_size": 2, # tri-gram
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
@ -158,6 +159,7 @@ def get_decoder_model(params: AttributeDict):
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
@ -392,9 +394,8 @@ def main():
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
@ -16,6 +16,7 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
@ -35,6 +36,7 @@ class Decoder(nn.Module):
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
blank_id: int,
|
||||
context_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -44,6 +46,9 @@ class Decoder(nn.Module):
|
||||
Dimension of the input embedding.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
context_size:
|
||||
Number of previous words to use to predict the next word.
|
||||
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||
"""
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(
|
||||
@ -53,13 +58,40 @@ class Decoder(nn.Module):
|
||||
)
|
||||
self.blank_id = blank_id
|
||||
|
||||
def forward(self, y: torch.Tensor) -> torch.Tensor:
|
||||
assert context_size >= 1, context_size
|
||||
self.context_size = context_size
|
||||
if context_size > 1:
|
||||
self.conv = nn.Conv1d(
|
||||
in_channels=embedding_dim,
|
||||
out_channels=embedding_dim,
|
||||
kernel_size=context_size,
|
||||
padding=0,
|
||||
groups=embedding_dim,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, U) with blank prepended.
|
||||
need_pad:
|
||||
True to left pad the input. Should be True during training.
|
||||
False to not pad the input. Should be False during inference.
|
||||
Returns:
|
||||
Return a tensor of shape (N, U, embedding_dim).
|
||||
"""
|
||||
embeding_out = self.embedding(y)
|
||||
if self.context_size > 1:
|
||||
embeding_out = embeding_out.permute(0, 2, 1)
|
||||
if need_pad is True:
|
||||
embeding_out = F.pad(
|
||||
embeding_out, pad=(self.context_size - 1, 0)
|
||||
)
|
||||
else:
|
||||
# During inference time, there is no need to do extra padding
|
||||
# as we only need one output
|
||||
assert embeding_out.size(-1) == self.context_size
|
||||
embeding_out = self.conv(embeding_out)
|
||||
embeding_out = embeding_out.permute(0, 2, 1)
|
||||
return embeding_out
|
||||
|
244
egs/librispeech/ASR/transducer_stateless/export.py
Executable file
244
egs/librispeech/ASR/transducer_stateless/export.py
Executable file
@ -0,0 +1,244 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./transducer_stateless/export.py \
|
||||
--exp-dir ./transducer_stateless/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `transducer_stateless/decode.py`, you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./transducer_stateless/decode.py \
|
||||
--exp-dir ./transducer_stateless/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 1 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=20,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# parameters for decoder
|
||||
"context_size": 2, # tri-gram
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict):
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict):
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict):
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -27,11 +27,6 @@ from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
@ -113,6 +108,11 @@ class Transducer(nn.Module):
|
||||
# Note: y does not start with SOS
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
loss = torchaudio.functional.rnnt_loss(
|
||||
logits=logits,
|
||||
targets=y_padded,
|
||||
|
307
egs/librispeech/ASR/transducer_stateless/pretrained.py
Executable file
307
egs/librispeech/ASR/transducer_stateless/pretrained.py
Executable file
@ -0,0 +1,307 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
(1) greedy search
|
||||
./transducer_stateless/pretrained.py \
|
||||
--checkpoint ./transducer_stateless/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
|
||||
(1) beam search
|
||||
./transducer_stateless/pretrained.py \
|
||||
--checkpoint ./transducer_stateless/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
|
||||
You can also use `./transducer_stateless/exp/epoch-xx.pt`.
|
||||
|
||||
Note: ./transducer_stateless/exp/pretrained.pt is generated by
|
||||
./transducer_stateless/export.py
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torchaudio
|
||||
from beam_search import beam_search, greedy_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Used only when --method is beam_search",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"sample_rate": 16000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# parameters for decoder
|
||||
"context_size": 2, # tri-gram
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict):
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict):
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict):
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
|
||||
params.update(vars(args))
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||
|
||||
with torch.no_grad():
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=features, x_lens=feature_lengths
|
||||
)
|
||||
|
||||
num_waves = encoder_out.size(0)
|
||||
hyps = []
|
||||
msg = f"Using {params.method}"
|
||||
if params.method == "beam_search":
|
||||
msg += f" with beam size {params.beam_size}"
|
||||
logging.info(msg)
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
58
egs/librispeech/ASR/transducer_stateless/test_decoder.py
Executable file
58
egs/librispeech/ASR/transducer_stateless/test_decoder.py
Executable file
@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_stateless/test_decoder.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from decoder import Decoder
|
||||
|
||||
|
||||
def test_decoder():
|
||||
vocab_size = 3
|
||||
blank_id = 0
|
||||
embedding_dim = 128
|
||||
context_size = 4
|
||||
|
||||
decoder = Decoder(
|
||||
vocab_size=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
blank_id=blank_id,
|
||||
context_size=context_size,
|
||||
)
|
||||
N = 100
|
||||
U = 20
|
||||
x = torch.randint(low=0, high=vocab_size, size=(N, U))
|
||||
y = decoder(x)
|
||||
assert y.shape == (N, U, embedding_dim)
|
||||
|
||||
# for inference
|
||||
x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
|
||||
y = decoder(x, need_pad=False)
|
||||
assert y.shape == (N, 1, embedding_dim)
|
||||
|
||||
|
||||
def main():
|
||||
test_decoder()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -92,7 +92,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=78,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
@ -202,6 +202,8 @@ def get_params() -> AttributeDict:
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# parameters for decoder
|
||||
"context_size": 2, # tri-gram
|
||||
# parameters for Noam
|
||||
"weight_decay": 1e-6,
|
||||
"warm_step": 80000, # For the 100h subset, use 8k
|
||||
@ -233,6 +235,7 @@ def get_decoder_model(params: AttributeDict):
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user