mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Begin to use multiple datasets.
This commit is contained in:
parent
70a3c56a18
commit
fb1e2ffdc1
@ -28,7 +28,7 @@ import os
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
from icefall.utils import get_executor
|
from icefall.utils import get_executor
|
||||||
@ -85,7 +85,7 @@ def compute_fbank_librispeech():
|
|||||||
# when an executor is specified, make more partitions
|
# when an executor is specified, make more partitions
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
executor=ex,
|
executor=ex,
|
||||||
storage_type=LilcomHdf5Writer,
|
storage_type=ChunkedLilcomHdf5Writer,
|
||||||
)
|
)
|
||||||
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||||
|
|
||||||
|
|||||||
@ -28,7 +28,7 @@ import os
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
|
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig, combine
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
from icefall.utils import get_executor
|
from icefall.utils import get_executor
|
||||||
@ -82,7 +82,7 @@ def compute_fbank_musan():
|
|||||||
storage_path=f"{output_dir}/feats_musan",
|
storage_path=f"{output_dir}/feats_musan",
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
executor=ex,
|
executor=ex,
|
||||||
storage_type=LilcomHdf5Writer,
|
storage_type=ChunkedLilcomHdf5Writer,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
musan_cuts.to_json(musan_cuts_path)
|
musan_cuts.to_json(musan_cuts_path)
|
||||||
|
|||||||
123
egs/librispeech/ASR/local/preprocess_gigaspeech.py
Normal file
123
egs/librispeech/ASR/local/preprocess_gigaspeech.py
Normal file
@ -0,0 +1,123 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, SupervisionSegment
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
# Similar text filtering and normalization procedure as in:
|
||||||
|
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_text(
|
||||||
|
utt: str,
|
||||||
|
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||||
|
whitespace_pattern=re.compile(r"\s\s+"),
|
||||||
|
) -> str:
|
||||||
|
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
|
||||||
|
|
||||||
|
|
||||||
|
def has_no_oov(
|
||||||
|
sup: SupervisionSegment,
|
||||||
|
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
|
||||||
|
) -> bool:
|
||||||
|
return oov_pattern.search(sup.text) is None
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess_giga_speech():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
output_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"DEV",
|
||||||
|
"TEST",
|
||||||
|
"XS",
|
||||||
|
"S",
|
||||||
|
"M",
|
||||||
|
"L",
|
||||||
|
"XL",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Loading manifest (may take 4 minutes)")
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix="gigaspeech",
|
||||||
|
suffix="jsonl.gz",
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||||
|
if raw_cuts_path.is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Note this step makes the recipe different than LibriSpeech:
|
||||||
|
# We must filter out some utterances and remove punctuation
|
||||||
|
# to be consistent with Kaldi.
|
||||||
|
logging.info("Filtering OOV utterances from supervisions")
|
||||||
|
m["supervisions"] = m["supervisions"].filter(has_no_oov)
|
||||||
|
logging.info(f"Normalizing text in {partition}")
|
||||||
|
for sup in m["supervisions"]:
|
||||||
|
sup.text = normalize_text(sup.text)
|
||||||
|
sup.custom = {"origin": "giga"}
|
||||||
|
|
||||||
|
# Create long-recording cut manifests.
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
# Run data augmentation that needs to be done in the
|
||||||
|
# time domain.
|
||||||
|
if partition not in ["DEV", "TEST"]:
|
||||||
|
logging.info(
|
||||||
|
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
|
||||||
|
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
|
||||||
|
)
|
||||||
|
cut_set = (
|
||||||
|
cut_set
|
||||||
|
+ cut_set.perturb_speed(0.9)
|
||||||
|
+ cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to split cuts into smaller chunks.")
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
logging.info(f"Saving to {raw_cuts_path}")
|
||||||
|
cut_set.to_file(raw_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
preprocess_giga_speech()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@ -0,0 +1,204 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from lhotse import CutSet
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataset:
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the BucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self, cuts_train: CutSet, cuts_musan: Optional[CutSet] = None
|
||||||
|
) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if cuts_musan is not None:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(
|
||||||
|
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(
|
||||||
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
|
)
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
return train_dl
|
||||||
@ -0,0 +1,57 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
class GigaSpeech:
|
||||||
|
def __init__(self, manifest_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files::
|
||||||
|
|
||||||
|
- cuts_L.jsonl.gz
|
||||||
|
- cuts_XL.jsonl.gz
|
||||||
|
- cuts_TEST.jsonl.gz
|
||||||
|
- cuts_DEV.jsonl.gz
|
||||||
|
"""
|
||||||
|
self.manifest_dir = Path(manifest_dir)
|
||||||
|
|
||||||
|
def train_L_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_L.json.gz"
|
||||||
|
logging.info(f"About to get train-L cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_XL_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_XL.json.gz"
|
||||||
|
logging.info(f"About to get train-XL cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_TEST.json.gz"
|
||||||
|
logging.info(f"About to get TEST cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_DEV.json.gz"
|
||||||
|
logging.info(f"About to get DEV cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
@ -0,0 +1,74 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
class LibriSpeech:
|
||||||
|
def __init__(self, manifest_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files::
|
||||||
|
|
||||||
|
- cuts_dev-clean.json.gz
|
||||||
|
- cuts_dev-other.json.gz
|
||||||
|
- cuts_test-clean.json.gz
|
||||||
|
- cuts_test-other.json.gz
|
||||||
|
- cuts_train-clean-100.json.gz
|
||||||
|
- cuts_train-clean-360.json.gz
|
||||||
|
- cuts_train-other-500.json.gz
|
||||||
|
"""
|
||||||
|
self.manifest_dir = Path(manifest_dir)
|
||||||
|
|
||||||
|
def train_clean_100_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-clean-100.json.gz"
|
||||||
|
logging.info(f"About to get train-clean-100 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def train_clean_360_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-clean-360.json.gz"
|
||||||
|
logging.info(f"About to get train-clean-360 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def train_other_500_cuts(self) -> CutSet:
|
||||||
|
f = self.args.manifest_dir / "cuts_train-other-500.json.gz"
|
||||||
|
logging.info(f"About to get train-other-500 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def test_clean_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_test-clean.json.gz"
|
||||||
|
logging.info(f"About to get test-clean cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def test_other_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_test-other.json.gz"
|
||||||
|
logging.info(f"About to get test-other cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_clean_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_dev-clean.json.gz"
|
||||||
|
logging.info(f"About to get dev-clean cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_other_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_dev-other.json.gz"
|
||||||
|
logging.info(f"About to get dev-other cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
Loading…
x
Reference in New Issue
Block a user