Add averaged model to rnnlm decoding

This commit is contained in:
Yifan Yang 2023-05-31 10:41:11 +08:00
parent 7b0afbdc16
commit fab0258df5

View File

@ -20,8 +20,8 @@ Usage:
./rnn_lm/compute_perplexity.py \ ./rnn_lm/compute_perplexity.py \
--epoch 4 \ --epoch 4 \
--avg 2 \ --avg 2 \
--use-averaged-model 1 \
--lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt --lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt
""" """
import argparse import argparse
@ -33,7 +33,12 @@ import torch
from dataset import get_dataloader from dataset import get_dataloader
from model import RnnLmModel from model import RnnLmModel
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import AttributeDict, setup_logger, str2bool from icefall.utils import AttributeDict, setup_logger, str2bool
@ -69,6 +74,17 @@ def get_parser():
""", """,
) )
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=False,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument( parser.add_argument(
"--exp-dir", "--exp-dir",
type=str, type=str,
@ -122,14 +138,14 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--batch-size", "--batch-size",
type=int, type=int,
default=50, default=150,
help="Number of RNN layers the model", help="Number of RNN layers the model",
) )
parser.add_argument( parser.add_argument(
"--max-sent-len", "--max-sent-len",
type=int, type=int,
default=100, default=200,
help="Number of RNN layers the model", help="Number of RNN layers the model",
) )
@ -153,6 +169,7 @@ def get_parser():
default=0, default=0,
help="Blank ID", help="Blank ID",
) )
return parser return parser
@ -165,13 +182,18 @@ def main():
params = AttributeDict(vars(args)) params = AttributeDict(vars(args))
if params.use_averaged_model:
params.suffix = "-use-averaged-model"
else:
params.suffix = ""
if params.iter > 0: if params.iter > 0:
setup_logger( setup_logger(
f"{params.exp_dir}/log-ppl/log-ppl-iter-{params.iter}-avg-{params.avg}" f"{params.exp_dir}/log-ppl/log-ppl-iter-{params.iter}-avg-{params.avg}{params.suffix}"
) )
else: else:
setup_logger( setup_logger(
f"{params.exp_dir}/log-ppl/log-ppl-epoch-{params.epoch}-avg-{params.avg}" f"{params.exp_dir}/log-ppl/log-ppl-epoch-{params.epoch}-avg-{params.avg}{params.suffix}"
) )
logging.info("Computing perplexity started") logging.info("Computing perplexity started")
logging.info(params) logging.info(params)
@ -191,37 +213,82 @@ def main():
tie_weights=params.tie_weights, tie_weights=params.tie_weights,
) )
if params.iter > 0: if not params.use_averaged_model:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ if params.iter > 0:
: params.avg filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
] : params.avg
if len(filenames) == 0: ]
raise ValueError( if len(filenames) == 0:
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" raise ValueError(
) f"No checkpoints found for"
elif len(filenames) < params.avg: f" --iter {params.iter}, --avg {params.avg}"
raise ValueError( )
f"Not enough checkpoints ({len(filenames)}) found for" elif len(filenames) < params.avg:
f" --iter {params.iter}, --avg {params.avg}" raise ValueError(
) f"Not enough checkpoints ({len(filenames)}) found for"
logging.info(f"averaging {filenames}") f" --iter {params.iter}, --avg {params.avg}"
model.to(device) )
model.load_state_dict( logging.info(f"averaging {filenames}")
average_checkpoints(filenames, device=device), strict=False model.to(device)
) model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1: elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else: else:
start = params.epoch - params.avg + 1 if params.iter > 0:
filenames = [] filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
for i in range(start, params.epoch + 1): : params.avg + 1
if i >= 0: ]
filenames.append(f"{params.exp_dir}/epoch-{i}.pt") if len(filenames) == 0:
logging.info(f"averaging {filenames}") raise ValueError(
model.to(device) f"No checkpoints found for"
model.load_state_dict( f" --iter {params.iter}, --avg {params.avg}"
average_checkpoints(filenames, device=device), strict=False )
) elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device) model.to(device)
model.eval() model.eval()
@ -263,7 +330,7 @@ def main():
ppl = math.exp(tot_loss / num_tokens) ppl = math.exp(tot_loss / num_tokens)
logging.info( logging.info(
f"total nll: {tot_loss}, num tokens: {num_tokens}, " f"total nll: {tot_loss}, num tokens: {num_tokens}, "
f"num sentences: {num_sentences}, ppl: {ppl:.3f}" f"num sentences: {num_sentences}, ppl: {ppl:.3f}, "
) )