mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Merge aeba8b505cd923181410c9ffcac6836f3d469e89 into 34fc1fdf0d8ff520e2bb18267d046ca207c78ef9
This commit is contained in:
commit
fa84791095
19
egs/mls_english/ASR/README.md
Normal file
19
egs/mls_english/ASR/README.md
Normal file
@ -0,0 +1,19 @@
|
||||
# Introduction
|
||||
|
||||
|
||||
|
||||
**Multilingual LibriSpeech (MLS)** is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. It includes about 44.5K hours of English and a total of about 6K hours for other languages. This icefall training recipe was created for the restructured version of the English split of the dataset available on Hugging Face below.
|
||||
|
||||
|
||||
|
||||
The dataset is available on Hugging Face. For more details, please visit:
|
||||
|
||||
- Dataset: https://huggingface.co/datasets/parler-tts/mls_eng
|
||||
- Original MLS dataset link: https://www.openslr.org/94
|
||||
|
||||
|
||||
## On-the-fly feature computation
|
||||
|
||||
This recipe currently only supports on-the-fly feature bank computation, since `lhotse` manifests and feature banks are not pre-calculated in this recipe. This should mean that the dataset can be streamed from Hugging Face, but we have not tested this yet. We may add a version that supports pre-calculating features to better match existing recipes.
|
||||
|
||||
<!-- [./RESULTS.md](./RESULTS.md) contains the latest results. -->
|
114
egs/mls_english/ASR/local/train_bpe_model.py
Normal file
114
egs/mls_english/ASR/local/train_bpe_model.py
Normal file
@ -0,0 +1,114 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# Copyright 2024 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# You can install sentencepiece via:
|
||||
#
|
||||
# pip install sentencepiece
|
||||
#
|
||||
# Due to an issue reported in
|
||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||
#
|
||||
# Please install a version >=0.1.96
|
||||
|
||||
import argparse
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
The generated bpe.model is saved to this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--byte-fallback",
|
||||
action="store_true",
|
||||
help="""Whether to enable byte_fallback when training bpe.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--character-coverage",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Character coverage in vocabulary.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transcript",
|
||||
type=str,
|
||||
help="Training transcript.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
help="Vocabulary size for BPE training",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
vocab_size = args.vocab_size
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
model_type = "bpe"
|
||||
|
||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||
train_text = args.transcript
|
||||
input_sentence_size = 100000000
|
||||
|
||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||
unk_id = len(user_defined_symbols)
|
||||
# Note: unk_id is fixed to 2.
|
||||
# If you change it, you should also change other
|
||||
# places that are using it.
|
||||
|
||||
model_file = Path(model_prefix + ".model")
|
||||
if not model_file.is_file():
|
||||
spm.SentencePieceTrainer.train(
|
||||
input=train_text,
|
||||
vocab_size=vocab_size,
|
||||
model_type=model_type,
|
||||
model_prefix=model_prefix,
|
||||
input_sentence_size=input_sentence_size,
|
||||
character_coverage=args.character_coverage,
|
||||
user_defined_symbols=user_defined_symbols,
|
||||
byte_fallback=args.byte_fallback,
|
||||
unk_id=unk_id,
|
||||
bos_id=-1,
|
||||
eos_id=-1,
|
||||
)
|
||||
else:
|
||||
print(f"{model_file} exists - skipping")
|
||||
return
|
||||
|
||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
253
egs/mls_english/ASR/local/utils/asr_datamodule.py
Normal file
253
egs/mls_english/ASR/local/utils/asr_datamodule.py
Normal file
@ -0,0 +1,253 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class MLSEnglishHFAsrDataModule:
|
||||
"""
|
||||
DataModule for MLS English ASR experiments using HuggingFace dataset.
|
||||
Handles dataset loading and provides train/valid/test dataloaders with
|
||||
on-the-fly feature extraction.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
self.dataset = None
|
||||
|
||||
# self._validate_args()
|
||||
|
||||
# def _validate_args(self) -> None:
|
||||
# """Validate configuration arguments."""
|
||||
# if self.args.on_the_fly_feats is False:
|
||||
# raise ValueError("This recipe requires on-the-fly feature extraction")
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="Options for data loading and processing",
|
||||
)
|
||||
|
||||
# Dataset configuration
|
||||
group.add_argument(
|
||||
"--dataset-path",
|
||||
type=str,
|
||||
default="parler-tts/mls_eng",
|
||||
help="Path to HuggingFace MLS English dataset (name or local path)",
|
||||
)
|
||||
|
||||
# Sampling and batching
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=float,
|
||||
default=200.0,
|
||||
help="Maximum batch duration in seconds",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use bucketing sampler",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of buckets for DynamicBucketingSampler",
|
||||
)
|
||||
|
||||
# Data augmentation
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to enable SpecAugment",
|
||||
)
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Time warp factor for SpecAugment",
|
||||
)
|
||||
|
||||
# Dataloader configuration
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Number of workers for data loading",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to return cuts in batch",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last incomplete batch",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
def load_dataset(self, dataset_path: Optional[str] = None) -> None:
|
||||
"""Load the HuggingFace dataset."""
|
||||
dataset_path = dataset_path or self.args.dataset_path
|
||||
logging.info(f"Loading MLS English dataset from: {dataset_path}")
|
||||
|
||||
try:
|
||||
from datasets import load_dataset
|
||||
|
||||
self.dataset = load_dataset(dataset_path)
|
||||
logging.info("Dataset loaded successfully")
|
||||
except ImportError:
|
||||
raise ImportError("Please install datasets package: pip install datasets")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load dataset: {e}")
|
||||
|
||||
def _create_dataset(
|
||||
self, cuts: CutSet, is_train: bool = False
|
||||
) -> K2SpeechRecognitionDataset:
|
||||
"""Create appropriate dataset with transforms."""
|
||||
transforms = []
|
||||
input_transforms = []
|
||||
|
||||
if is_train and self.args.enable_spec_aug:
|
||||
input_transforms.append(self._create_spec_augment())
|
||||
|
||||
return K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
def _create_spec_augment(self) -> SpecAugment:
|
||||
"""Create SpecAugment transform based on config."""
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(SpecAugment.__init__).parameters[
|
||||
"num_frame_masks"
|
||||
]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
|
||||
return SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
|
||||
def _create_sampler(
|
||||
self, cuts: CutSet, shuffle: bool
|
||||
) -> Union[DynamicBucketingSampler, SimpleCutSampler]:
|
||||
"""Create appropriate sampler based on config."""
|
||||
if self.args.bucketing_sampler:
|
||||
return DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
return SimpleCutSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=shuffle,
|
||||
)
|
||||
|
||||
def train_dataloader(
|
||||
self, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||
) -> DataLoader:
|
||||
"""Create train dataloader."""
|
||||
cuts = self.train_cuts()
|
||||
dataset = self._create_dataset(cuts, is_train=True)
|
||||
sampler = self._create_sampler(cuts, shuffle=True)
|
||||
|
||||
if sampler_state_dict:
|
||||
sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
return DataLoader(
|
||||
dataset,
|
||||
sampler=sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
def valid_dataloader(self) -> DataLoader:
|
||||
"""Create validation dataloader."""
|
||||
cuts = self.valid_cuts()
|
||||
return DataLoader(
|
||||
self._create_dataset(cuts),
|
||||
sampler=self._create_sampler(cuts, shuffle=False),
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
def test_dataloader(self) -> DataLoader:
|
||||
"""Create test dataloader."""
|
||||
cuts = self.test_cuts()
|
||||
return DataLoader(
|
||||
self._create_dataset(cuts),
|
||||
sampler=self._create_sampler(cuts, shuffle=False),
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
return CutSet.from_huggingface_dataset(
|
||||
self.dataset["train"], text_key="transcript"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
return CutSet.from_huggingface_dataset(
|
||||
self.dataset["dev"], text_key="transcript"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
return CutSet.from_huggingface_dataset(
|
||||
self.dataset["test"], text_key="transcript"
|
||||
)
|
136
egs/mls_english/ASR/local/utils/compute_fbank_mls_english.py
Normal file
136
egs/mls_english/ASR/local/utils/compute_fbank_mls_english.py
Normal file
@ -0,0 +1,136 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
# fmt: off
|
||||
from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
RecordingSet,
|
||||
SupervisionSet,
|
||||
)
|
||||
from lhotse.utils import is_module_available
|
||||
|
||||
# fmt: on
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
RNG_SEED = 42
|
||||
concat_params = {"gap": 1.0, "maxlen": 10.0}
|
||||
|
||||
|
||||
def make_cutset_blueprints(
|
||||
mls_eng_hf_dataset_path: str = "parler-tts/mls_eng",
|
||||
) -> List[Tuple[str, CutSet]]:
|
||||
cut_sets = []
|
||||
|
||||
if not is_module_available("datasets"):
|
||||
raise ImportError(
|
||||
"To process the MLS English HF corpus, please install optional dependency: pip install datasets"
|
||||
)
|
||||
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset(mls_eng_hf_dataset_path)
|
||||
|
||||
# Create test dataset
|
||||
logging.info("Creating test cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"test",
|
||||
CutSet.from_huggingface_dataset(dataset["test"], text_key="transcript"),
|
||||
)
|
||||
)
|
||||
|
||||
# Create dev dataset
|
||||
logging.info("Creating dev cuts.")
|
||||
cut_sets.append(
|
||||
("dev", CutSet.from_huggingface_dataset(dataset["dev"], text_key="transcript"))
|
||||
)
|
||||
|
||||
# Create train dataset
|
||||
logging.info("Creating train cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"train",
|
||||
CutSet.from_huggingface_dataset(dataset["train"], text_key="transcript"),
|
||||
)
|
||||
)
|
||||
return cut_sets
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument("-m", "--manifest-dir", type=Path)
|
||||
parser.add_argument("-a", "--audio-dir", type=Path)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
||||
num_jobs = min(16, os.cpu_count())
|
||||
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
if (args.manifest_dir / ".mls-eng-fbank.done").exists():
|
||||
logging.info(
|
||||
"Previous fbank computed for MLS English found. "
|
||||
f"Delete {args.manifest_dir / '.mls-eng-fbank.done'} to allow recomputing fbank."
|
||||
)
|
||||
return
|
||||
else:
|
||||
mls_eng_hf_dataset_path = "/root/datasets/parler-tts--mls_eng"
|
||||
cut_sets = make_cutset_blueprints(mls_eng_hf_dataset_path)
|
||||
for part, cut_set in cut_sets:
|
||||
logging.info(f"Processing {part}")
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
num_jobs=num_jobs,
|
||||
storage_path=(args.manifest_dir / f"feats_{part}").as_posix(),
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
# cut_set.save_audios(args.audio_dir)
|
||||
# cut_set.to_file(args.manifest_dir / f"mls_eng_cuts_{part}.jsonl.gz")
|
||||
|
||||
logging.info("All fbank computed for MLS English.")
|
||||
(args.manifest_dir / ".mls-eng-fbank.done").touch()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
91
egs/mls_english/ASR/local/utils/generate_transcript.py
Normal file
91
egs/mls_english/ASR/local/utils/generate_transcript.py
Normal file
@ -0,0 +1,91 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from lhotse import CutSet
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Generate transcripts for BPE training from MLS English dataset",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset-path",
|
||||
type=str,
|
||||
default="parler-tts/mls_eng",
|
||||
help="Path to HuggingFace MLS English dataset (name or local path)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default=Path("data/lang"),
|
||||
help="Directory to store output transcripts",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--split",
|
||||
type=str,
|
||||
default="train",
|
||||
help="Dataset split to use for generating transcripts (train/dev/test)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def generate_transcript_from_cuts(cuts: CutSet, output_file: Path) -> None:
|
||||
"""Generate transcript text file from Lhotse CutSet."""
|
||||
with open(output_file, "w") as f:
|
||||
for cut in tqdm(cuts, desc="Processing cuts"):
|
||||
for sup in cut.supervisions:
|
||||
f.write(f"{sup.text}\n")
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s",
|
||||
level=logging.INFO,
|
||||
)
|
||||
|
||||
args.lang_dir.mkdir(parents=True, exist_ok=True)
|
||||
output_file = args.lang_dir / "transcript.txt"
|
||||
|
||||
logging.info(f"Loading {args.split} split from dataset: {args.dataset_path}")
|
||||
try:
|
||||
cuts = CutSet.from_huggingface_dataset(
|
||||
args.dataset_path, split=args.split, text_key="transcript"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to load dataset: {e}")
|
||||
raise
|
||||
|
||||
logging.info(f"Generating transcript to {output_file}")
|
||||
generate_transcript_from_cuts(cuts, output_file)
|
||||
logging.info("Transcript generation completed")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
72
egs/mls_english/ASR/prepare.sh
Normal file
72
egs/mls_english/ASR/prepare.sh
Normal file
@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Prepare script for MLS English ASR recipe in icefall
|
||||
# This recipe uses on-the-fly feature extraction, so it skips manifest
|
||||
# and feature generation steps used in other recipes.
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
# Configuration for BPE tokenizer
|
||||
vocab_sizes=(2000) # You can add more sizes like (500 1000 2000) for comparison
|
||||
|
||||
# Directory where dataset will be downloaded
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "Starting MLS English data preparation"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download MLS English dataset"
|
||||
if [ ! -d $dl_dir/mls_english ]; then
|
||||
if ! git clone https://huggingface.co/datasets/parler-tts/mls_eng $dl_dir/mls_english; then
|
||||
log "Failed to download MLS English dataset"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
mkdir -p data/lang
|
||||
lang_dir=data/lang
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare transcript for BPE training"
|
||||
if [ ! -f $lang_dir/transcript.txt ]; then
|
||||
log "Generating transcripts for BPE training"
|
||||
./local/utils/generate_transcript.py --lang-dir $lang_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare BPE tokenizer"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Training BPE model with vocab_size=${vocab_size}"
|
||||
bpe_dir=data/lang/bpe_${vocab_size}
|
||||
mkdir -p $bpe_dir
|
||||
|
||||
if [ ! -f $bpe_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $bpe_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/transcript.txt
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
log "MLS English data preparation completed successfully"
|
1
egs/mls_english/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/mls_english/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../local/utils/asr_datamodule.py
|
1
egs/mls_english/ASR/zipformer/beam_search.py
Symbolic link
1
egs/mls_english/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/beam_search.py
|
1
egs/mls_english/ASR/zipformer/ctc_decode.py
Symbolic link
1
egs/mls_english/ASR/zipformer/ctc_decode.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/ctc_decode.py
|
1085
egs/mls_english/ASR/zipformer/decode.py
Executable file
1085
egs/mls_english/ASR/zipformer/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/mls_english/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/mls_english/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/mls_english/ASR/zipformer/decoder.py
Symbolic link
1
egs/mls_english/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1261
egs/mls_english/ASR/zipformer/do_not_use_it_directly.py
Executable file
1261
egs/mls_english/ASR/zipformer/do_not_use_it_directly.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/mls_english/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/mls_english/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/mls_english/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/mls_english/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/mls_english/ASR/zipformer/export.py
Symbolic link
1
egs/mls_english/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export.py
|
1
egs/mls_english/ASR/zipformer/generate_averaged_model.py
Symbolic link
1
egs/mls_english/ASR/zipformer/generate_averaged_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/generate_averaged_model.py
|
1
egs/mls_english/ASR/zipformer/joiner.py
Symbolic link
1
egs/mls_english/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/mls_english/ASR/zipformer/model.py
Symbolic link
1
egs/mls_english/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/mls_english/ASR/zipformer/my_profile.py
Symbolic link
1
egs/mls_english/ASR/zipformer/my_profile.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/my_profile.py
|
1
egs/mls_english/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/mls_english/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/mls_english/ASR/zipformer/optim.py
Symbolic link
1
egs/mls_english/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/mls_english/ASR/zipformer/pretrained.py
Symbolic link
1
egs/mls_english/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/mls_english/ASR/zipformer/scaling.py
Symbolic link
1
egs/mls_english/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/mls_english/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/mls_english/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/mls_english/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/mls_english/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
900
egs/mls_english/ASR/zipformer/streaming_decode.py
Executable file
900
egs/mls_english/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,900 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./zipformer/streaming_decode.py--epoch 28 --avg 15 --causal 1 --chunk-size 32 --left-context-frames 256 --exp-dir ./zipformer/exp-large --lang data/lang_char --num-encoder-layers 2,2,4,5,4,2 --feedforward-dim 512,768,1536,2048,1536,768 --encoder-dim 192,256,512,768,512,256 --encoder-unmasked-dim 192,192,256,320,256,192
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
import subprocess as sp
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from tokenizer import Tokenizer
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
# pdb.set_trace()
|
||||
# print(model)
|
||||
# print(model.device)
|
||||
# device = model.device
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=model.device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=model.device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
# if decode_streams[i].done:
|
||||
# finished_streams.append(i)
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
tokenizer: Tokenizer,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
tokenizer:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
# - this is to avoid sending [-32k,+32k] signal in...
|
||||
# - some lhotse AudioTransform classes can make the signal
|
||||
# be out of range [-1, 1], hence the tolerance 10
|
||||
assert (
|
||||
np.abs(audio).max() <= 10
|
||||
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
tokenizer.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
# print("INSIDE LEN DECODE STREAMS")
|
||||
# pdb.set_trace()
|
||||
# print(model.device)
|
||||
# test_device = model.device
|
||||
# print("done")
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
# print('INSIDE FOR LOOP ')
|
||||
# print(finished_streams)
|
||||
|
||||
if not finished_streams:
|
||||
print("No finished streams, breaking the loop")
|
||||
break
|
||||
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
try:
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
tokenizer.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
except IndexError as e:
|
||||
print(f"IndexError: {e}")
|
||||
print(f"decode_streams length: {len(decode_streams)}")
|
||||
print(f"finished_streams: {finished_streams}")
|
||||
print(f"i: {i}")
|
||||
continue
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
torch.cuda.synchronize()
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
ReazonSpeechAsrDataModule.add_arguments(parser)
|
||||
Tokenizer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp_token = Tokenizer.load(params.lang, params.lang_type)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp_token.piece_to_id("<blk>")
|
||||
params.unk_id = sp_token.piece_to_id("<unk>")
|
||||
params.vocab_size = sp_token.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
||||
|
||||
valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||
test_cuts = reazonspeech_corpus.test_cuts()
|
||||
|
||||
test_sets = ["valid", "test"]
|
||||
test_cuts = [valid_cuts, test_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
tokenizer=sp_token,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
# valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||
|
||||
# for valid_cut in valid_cuts:
|
||||
# results_dict = decode_dataset(
|
||||
# cuts=valid_cut,
|
||||
# params=params,
|
||||
# model=model,
|
||||
# sp=sp,
|
||||
# decoding_graph=decoding_graph,
|
||||
# )
|
||||
# save_results(
|
||||
# params=params,
|
||||
# test_set_name="valid",
|
||||
# results_dict=results_dict,
|
||||
# )
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/mls_english/ASR/zipformer/subsampling.py
Symbolic link
1
egs/mls_english/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1
egs/mls_english/ASR/zipformer/test_scaling.py
Symbolic link
1
egs/mls_english/ASR/zipformer/test_scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_scaling.py
|
1
egs/mls_english/ASR/zipformer/test_subsampling.py
Symbolic link
1
egs/mls_english/ASR/zipformer/test_subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_subsampling.py
|
252
egs/mls_english/ASR/zipformer/tokenizer.py
Normal file
252
egs/mls_english/ASR/zipformer/tokenizer.py
Normal file
@ -0,0 +1,252 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import Callable, List, Union
|
||||
|
||||
import sentencepiece as spm
|
||||
from k2 import SymbolTable
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
text2word: Callable[[str], List[str]]
|
||||
|
||||
@staticmethod
|
||||
def add_arguments(parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(title="Lang related options")
|
||||
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
||||
|
||||
group.add_argument(
|
||||
"--lang-type",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"Either 'bpe' or 'char'. If not provided, it expects lang_dir/lang_type to exists. "
|
||||
"Note: 'bpe' directly loads sentencepiece.SentencePieceProcessor"
|
||||
),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def Load(lang_dir: Path, lang_type="", oov="<unk>"):
|
||||
|
||||
if not lang_type:
|
||||
assert (lang_dir / "lang_type").exists(), "lang_type not specified."
|
||||
lang_type = (lang_dir / "lang_type").read_text().strip()
|
||||
|
||||
tokenizer = None
|
||||
|
||||
if lang_type == "bpe":
|
||||
assert (
|
||||
lang_dir / "bpe.model"
|
||||
).exists(), f"No BPE .model could be found in {lang_dir}."
|
||||
tokenizer = spm.SentencePieceProcessor()
|
||||
tokenizer.Load(str(lang_dir / "bpe.model"))
|
||||
elif lang_type == "char":
|
||||
tokenizer = CharTokenizer(lang_dir, oov=oov)
|
||||
else:
|
||||
raise NotImplementedError(f"{lang_type} not supported at the moment.")
|
||||
|
||||
return tokenizer
|
||||
|
||||
load = Load
|
||||
|
||||
def PieceToId(self, piece: str) -> int:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
piece_to_id = PieceToId
|
||||
|
||||
def IdToPiece(self, id: int) -> str:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
id_to_piece = IdToPiece
|
||||
|
||||
def GetPieceSize(self) -> int:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
get_piece_size = GetPieceSize
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.get_piece_size()
|
||||
|
||||
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def EncodeAsIds(self, input: str) -> List[int]:
|
||||
return self.EncodeAsIdsBatch([input])[0]
|
||||
|
||||
def EncodeAsPieces(self, input: str) -> List[str]:
|
||||
return self.EncodeAsPiecesBatch([input])[0]
|
||||
|
||||
def Encode(
|
||||
self, input: Union[str, List[str]], out_type=int
|
||||
) -> Union[List, List[List]]:
|
||||
if not input:
|
||||
return []
|
||||
|
||||
if isinstance(input, list):
|
||||
if out_type is int:
|
||||
return self.EncodeAsIdsBatch(input)
|
||||
if out_type is str:
|
||||
return self.EncodeAsPiecesBatch(input)
|
||||
|
||||
if out_type is int:
|
||||
return self.EncodeAsIds(input)
|
||||
if out_type is str:
|
||||
return self.EncodeAsPieces(input)
|
||||
|
||||
encode = Encode
|
||||
|
||||
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def DecodeIds(self, input: List[int]) -> str:
|
||||
return self.DecodeIdsBatch([input])[0]
|
||||
|
||||
def DecodePieces(self, input: List[str]) -> str:
|
||||
return self.DecodePiecesBatch([input])[0]
|
||||
|
||||
def Decode(
|
||||
self,
|
||||
input: Union[int, List[int], List[str], List[List[int]], List[List[str]]],
|
||||
) -> Union[List[str], str]:
|
||||
|
||||
if not input:
|
||||
return ""
|
||||
|
||||
if isinstance(input, int):
|
||||
return self.id_to_piece(input)
|
||||
elif isinstance(input, str):
|
||||
raise TypeError(
|
||||
"Unlike spm.SentencePieceProcessor, cannot decode from type str."
|
||||
)
|
||||
|
||||
if isinstance(input[0], list):
|
||||
if not input[0] or isinstance(input[0][0], int):
|
||||
return self.DecodeIdsBatch(input)
|
||||
|
||||
if isinstance(input[0][0], str):
|
||||
return self.DecodePiecesBatch(input)
|
||||
|
||||
if isinstance(input[0], int):
|
||||
return self.DecodeIds(input)
|
||||
if isinstance(input[0], str):
|
||||
return self.DecodePieces(input)
|
||||
|
||||
raise RuntimeError("Unknown input type")
|
||||
|
||||
decode = Decode
|
||||
|
||||
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||
raise NotImplementedError(
|
||||
"You need to implement this function in the child class."
|
||||
)
|
||||
|
||||
def Split(self, input: Union[List[str], str]) -> Union[List[List[str]], List[str]]:
|
||||
if isinstance(input, list):
|
||||
return self.SplitBatch(input)
|
||||
elif isinstance(input, str):
|
||||
return self.SplitBatch([input])[0]
|
||||
raise RuntimeError("Unknown input type")
|
||||
|
||||
split = Split
|
||||
|
||||
|
||||
class CharTokenizer(Tokenizer):
|
||||
def __init__(self, lang_dir: Path, oov="<unk>", sep=""):
|
||||
assert (
|
||||
lang_dir / "tokens.txt"
|
||||
).exists(), f"tokens.txt could not be found in {lang_dir}."
|
||||
token_table = SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
assert (
|
||||
"#0" not in token_table
|
||||
), "This tokenizer does not support disambig symbols."
|
||||
self._id2sym = token_table._id2sym
|
||||
self._sym2id = token_table._sym2id
|
||||
self.oov = oov
|
||||
self.oov_id = self._sym2id[oov]
|
||||
self.sep = sep
|
||||
if self.sep:
|
||||
self.text2word = lambda x: x.split(self.sep)
|
||||
else:
|
||||
self.text2word = lambda x: list(x.replace(" ", ""))
|
||||
|
||||
def piece_to_id(self, piece: str) -> int:
|
||||
try:
|
||||
return self._sym2id[piece]
|
||||
except KeyError:
|
||||
return self.oov_id
|
||||
|
||||
def id_to_piece(self, id: int) -> str:
|
||||
return self._id2sym[id]
|
||||
|
||||
def get_piece_size(self) -> int:
|
||||
return len(self._sym2id)
|
||||
|
||||
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||
return [[self.piece_to_id(i) for i in self.text2word(text)] for text in input]
|
||||
|
||||
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||
return [
|
||||
[i if i in self._sym2id else self.oov for i in self.text2word(text)]
|
||||
for text in input
|
||||
]
|
||||
|
||||
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||
return [self.sep.join(self.id_to_piece(i) for i in text) for text in input]
|
||||
|
||||
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||
return [self.sep.join(text) for text in input]
|
||||
|
||||
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||
return [self.text2word(text) for text in input]
|
||||
|
||||
|
||||
def test_CharTokenizer():
|
||||
test_single_string = "こんにちは"
|
||||
test_multiple_string = [
|
||||
"今日はいい天気ですよね",
|
||||
"諏訪湖は綺麗でしょう",
|
||||
"这在词表外",
|
||||
"分かち 書き に し た 文章 です",
|
||||
"",
|
||||
]
|
||||
test_empty_string = ""
|
||||
sp = Tokenizer.load(Path("lang_char"), "char", oov="<unk>")
|
||||
splitter = sp.split
|
||||
print(sp.encode(test_single_string, out_type=str))
|
||||
print(sp.encode(test_single_string, out_type=int))
|
||||
print(sp.encode(test_multiple_string, out_type=str))
|
||||
print(sp.encode(test_multiple_string, out_type=int))
|
||||
print(sp.encode(test_empty_string, out_type=str))
|
||||
print(sp.encode(test_empty_string, out_type=int))
|
||||
print(sp.decode(sp.encode(test_single_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_single_string, out_type=int)))
|
||||
print(sp.decode(sp.encode(test_multiple_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_multiple_string, out_type=int)))
|
||||
print(sp.decode(sp.encode(test_empty_string, out_type=str)))
|
||||
print(sp.decode(sp.encode(test_empty_string, out_type=int)))
|
||||
print(splitter(test_single_string))
|
||||
print(splitter(test_multiple_string))
|
||||
print(splitter(test_empty_string))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_CharTokenizer()
|
1396
egs/mls_english/ASR/zipformer/train.py
Executable file
1396
egs/mls_english/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/mls_english/ASR/zipformer/zipformer.py
Symbolic link
1
egs/mls_english/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user