Minor fixes for logging (#296)

* Minor fixes for logging

* Minor fix
This commit is contained in:
Wei Kang 2022-04-10 23:34:18 +08:00 committed by GitHub
parent 08473a17aa
commit f721a2fd7a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 45 additions and 28 deletions

View File

@ -609,21 +609,6 @@ def train_one_epoch(
global_step=params.batch_idx_train, global_step=params.batch_idx_train,
) )
def maybe_log_param_relative_changes():
if (
params.log_diagnostics
and tb_writer is not None
and params.batch_idx_train % (params.log_interval * 5) == 0
):
deltas = optim_step_and_measure_param_change(model, optimizer)
tb_writer.add_scalars(
"train/relative_param_change_per_minibatch",
deltas,
global_step=params.batch_idx_train,
)
else:
optimizer.step()
cur_batch_idx = params.get("cur_batch_idx", 0) cur_batch_idx = params.get("cur_batch_idx", 0)
for batch_idx, batch in enumerate(train_dl): for batch_idx, batch in enumerate(train_dl):
@ -651,7 +636,26 @@ def train_one_epoch(
maybe_log_weights("train/param_norms") maybe_log_weights("train/param_norms")
maybe_log_gradients("train/grad_norms") maybe_log_gradients("train/grad_norms")
maybe_log_param_relative_changes()
old_parameters = None
if (
params.log_diagnostics
and tb_writer is not None
and params.batch_idx_train % (params.log_interval * 5) == 0
):
old_parameters = {
n: p.detach().clone() for n, p in model.named_parameters()
}
optimizer.step()
if old_parameters is not None:
deltas = optim_step_and_measure_param_change(model, old_parameters)
tb_writer.add_scalars(
"train/relative_param_change_per_minibatch",
deltas,
global_step=params.batch_idx_train,
)
optimizer.zero_grad() optimizer.zero_grad()

View File

@ -25,15 +25,14 @@ from collections import defaultdict
from contextlib import contextmanager from contextlib import contextmanager
from datetime import datetime from datetime import datetime
from pathlib import Path from pathlib import Path
from typing import Dict, Iterable, List, TextIO, Optional, Tuple, Union from typing import Dict, Iterable, List, TextIO, Tuple, Union
import k2 import k2
import k2.version import k2.version
import kaldialign import kaldialign
import torch import torch
import torch.nn as nn
import torch.distributed as dist import torch.distributed as dist
from torch.cuda.amp import GradScaler import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
Pathlike = Union[str, Path] Pathlike = Union[str, Path]
@ -758,11 +757,10 @@ def measure_gradient_norms(
def optim_step_and_measure_param_change( def optim_step_and_measure_param_change(
model: nn.Module, model: nn.Module,
optimizer: torch.optim.Optimizer, old_parameters: Dict[str, nn.parameter.Parameter],
scaler: Optional[GradScaler] = None,
) -> Dict[str, float]: ) -> Dict[str, float]:
""" """
Perform model weight update and measure the "relative change in parameters per minibatch." Measure the "relative change in parameters per minibatch."
It is understood as a ratio between the L2 norm of the difference between original and updates parameters, It is understood as a ratio between the L2 norm of the difference between original and updates parameters,
and the L2 norm of the original parameter. It is given by the formula: and the L2 norm of the original parameter. It is given by the formula:
@ -770,16 +768,31 @@ def optim_step_and_measure_param_change(
\begin{aligned} \begin{aligned}
\delta = \frac{\Vert\theta - \theta_{new}\Vert^2}{\Vert\theta\Vert^2} \delta = \frac{\Vert\theta - \theta_{new}\Vert^2}{\Vert\theta\Vert^2}
\end{aligned} \end{aligned}
"""
param_copy = {n: p.detach().clone() for n, p in model.named_parameters()} This function is supposed to be used as follows:
if scaler:
scaler.step(optimizer) .. code-block:: python
else:
old_parameters = {
n: p.detach().clone() for n, p in model.named_parameters()
}
optimizer.step() optimizer.step()
deltas = optim_step_and_measure_param_change(old_parameters)
Args:
model: A torch.nn.Module instance.
old_parameters:
A Dict of named_parameters before optimizer.step().
Return:
A Dict containing the relative change for each parameter.
"""
relative_change = {} relative_change = {}
with torch.no_grad(): with torch.no_grad():
for n, p_new in model.named_parameters(): for n, p_new in model.named_parameters():
p_orig = param_copy[n] p_orig = old_parameters[n]
delta = l2_norm(p_orig - p_new) / l2_norm(p_orig) delta = l2_norm(p_orig - p_new) / l2_norm(p_orig)
relative_change[n] = delta.item() relative_change[n] = delta.item()
return relative_change return relative_change