mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
Use stateless decoder.
This commit is contained in:
parent
fcc22d3e91
commit
f6a33a85c5
@ -6,8 +6,6 @@ following command to start the training:
|
||||
```bash
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2"
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer/train.py \
|
||||
|
@ -583,6 +583,9 @@ def run(rank, world_size, args):
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
|
22
egs/librispeech/ASR/transducer_stateless/README.md
Normal file
22
egs/librispeech/ASR/transducer_stateless/README.md
Normal file
@ -0,0 +1,22 @@
|
||||
## Introduction
|
||||
|
||||
The decoder, i.e., the prediction network, is from
|
||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||
(Rnn-Transducer with Stateless Prediction Network)
|
||||
|
||||
You can use the following command to start the training:
|
||||
|
||||
```bash
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer_stateless/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer_stateless/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--lr-factor 2.5 \
|
||||
```
|
1
egs/librispeech/ASR/transducer_stateless/asr_datamodule.py
Symbolic link
1
egs/librispeech/ASR/transducer_stateless/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../transducer/asr_datamodule.py
|
212
egs/librispeech/ASR/transducer_stateless/beam_search.py
Normal file
212
egs/librispeech/ASR/transducer_stateless/beam_search.py
Normal file
@ -0,0 +1,212 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
|
||||
def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
||||
"""
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
device = model.device
|
||||
|
||||
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||
decoder_out, (h, c) = model.decoder(sos)
|
||||
T = encoder_out.size(1)
|
||||
t = 0
|
||||
hyp = []
|
||||
max_u = 1000 # terminate after this number of steps
|
||||
u = 0
|
||||
|
||||
while t < T and u < max_u:
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||
# fmt: on
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
# logits is (1, 1, 1, vocab_size)
|
||||
|
||||
log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob is (1, 1, 1, vocab_size)
|
||||
# TODO: Use logits.argmax()
|
||||
y = log_prob.argmax()
|
||||
if y != blank_id:
|
||||
hyp.append(y.item())
|
||||
y = y.reshape(1, 1)
|
||||
decoder_out, (h, c) = model.decoder(y, (h, c))
|
||||
u += 1
|
||||
else:
|
||||
t += 1
|
||||
|
||||
return hyp
|
||||
|
||||
|
||||
@dataclass
|
||||
class Hypothesis:
|
||||
ys: List[int] # the predicted sequences so far
|
||||
log_prob: float # The log prob of ys
|
||||
|
||||
# Optional decoder state. We assume it is LSTM for now,
|
||||
# so the state is a tuple (h, c)
|
||||
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
||||
|
||||
|
||||
def beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 5,
|
||||
) -> List[int]:
|
||||
"""
|
||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||
|
||||
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
beam:
|
||||
Beam size.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = model.decoder.sos_id
|
||||
device = model.device
|
||||
|
||||
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||
decoder_out, (h, c) = model.decoder(sos)
|
||||
T = encoder_out.size(1)
|
||||
t = 0
|
||||
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
|
||||
max_u = 20000 # terminate after this number of steps
|
||||
u = 0
|
||||
|
||||
cache: Dict[
|
||||
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
|
||||
] = {}
|
||||
|
||||
while t < T and u < max_u:
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||
# fmt: on
|
||||
A = B
|
||||
B = []
|
||||
# for hyp in A:
|
||||
# for h in A:
|
||||
# if h.ys == hyp.ys[:-1]:
|
||||
# # update the score of hyp
|
||||
# decoder_input = torch.tensor(
|
||||
# [h.ys[-1]], device=device
|
||||
# ).reshape(1, 1)
|
||||
# decoder_out, _ = model.decoder(
|
||||
# decoder_input, h.decoder_state
|
||||
# )
|
||||
# logits = model.joiner(current_encoder_out, decoder_out)
|
||||
# log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob = log_prob.squeeze()
|
||||
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
|
||||
|
||||
while u < max_u:
|
||||
y_star = max(A, key=lambda hyp: hyp.log_prob)
|
||||
A.remove(y_star)
|
||||
|
||||
# Note: y_star.ys is unhashable, i.e., cannot be used
|
||||
# as a key into a dict
|
||||
cached_key = "_".join(map(str, y_star.ys))
|
||||
|
||||
if cached_key not in cache:
|
||||
decoder_input = torch.tensor(
|
||||
[y_star.ys[-1]], device=device
|
||||
).reshape(1, 1)
|
||||
|
||||
decoder_out, decoder_state = model.decoder(
|
||||
decoder_input,
|
||||
y_star.decoder_state,
|
||||
)
|
||||
cache[cached_key] = (decoder_out, decoder_state)
|
||||
else:
|
||||
decoder_out, decoder_state = cache[cached_key]
|
||||
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob is (1, 1, 1, vocab_size)
|
||||
log_prob = log_prob.squeeze()
|
||||
# Now log_prob is (vocab_size,)
|
||||
|
||||
# If we choose blank here, add the new hypothesis to B.
|
||||
# Otherwise, add the new hypothesis to A
|
||||
|
||||
# First, choose blank
|
||||
skip_log_prob = log_prob[blank_id]
|
||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
||||
|
||||
# ys[:] returns a copy of ys
|
||||
new_y_star = Hypothesis(
|
||||
ys=y_star.ys[:],
|
||||
log_prob=new_y_star_log_prob,
|
||||
# Caution: Use y_star.decoder_state here
|
||||
decoder_state=y_star.decoder_state,
|
||||
)
|
||||
B.append(new_y_star)
|
||||
|
||||
# Second, choose other labels
|
||||
for i, v in enumerate(log_prob.tolist()):
|
||||
if i in (blank_id, sos_id):
|
||||
continue
|
||||
new_ys = y_star.ys + [i]
|
||||
new_log_prob = y_star.log_prob + v
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys,
|
||||
log_prob=new_log_prob,
|
||||
decoder_state=decoder_state,
|
||||
)
|
||||
A.append(new_hyp)
|
||||
u += 1
|
||||
# check whether B contains more than "beam" elements more probable
|
||||
# than the most probable in A
|
||||
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
|
||||
B = sorted(
|
||||
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
|
||||
key=lambda hyp: hyp.log_prob,
|
||||
reverse=True,
|
||||
)
|
||||
if len(B) >= beam:
|
||||
B = B[:beam]
|
||||
break
|
||||
t += 1
|
||||
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
|
||||
ys = best_hyp.ys[1:] # [1:] to remove the blank
|
||||
return ys
|
922
egs/librispeech/ASR/transducer_stateless/conformer.py
Normal file
922
egs/librispeech/ASR/transducer_stateless/conformer.py
Normal file
@ -0,0 +1,922 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from transducer.transformer import Transformer
|
||||
|
||||
from icefall.utils import make_pad_mask
|
||||
|
||||
|
||||
class Conformer(Transformer):
|
||||
"""
|
||||
Args:
|
||||
num_features (int): Number of input features
|
||||
output_dim (int): Number of output dimension
|
||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||
d_model (int): attention dimension
|
||||
nhead (int): number of head
|
||||
dim_feedforward (int): feedforward dimention
|
||||
num_encoder_layers (int): number of encoder layers
|
||||
dropout (float): dropout rate
|
||||
cnn_module_kernel (int): Kernel size of convolution module
|
||||
normalize_before (bool): whether to use layer_norm before the first block.
|
||||
vgg_frontend (bool): whether to use vgg frontend.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
output_dim: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: bool = False,
|
||||
) -> None:
|
||||
super(Conformer, self).__init__(
|
||||
num_features=num_features,
|
||||
output_dim=output_dim,
|
||||
subsampling_factor=subsampling_factor,
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
vgg_frontend=vgg_frontend,
|
||||
use_feat_batchnorm=use_feat_batchnorm,
|
||||
)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
|
||||
encoder_layer = ConformerEncoderLayer(
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward,
|
||||
dropout,
|
||||
cnn_module_kernel,
|
||||
normalize_before,
|
||||
)
|
||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||
self.normalize_before = normalize_before
|
||||
if self.normalize_before:
|
||||
self.after_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||
# and throws an error without this change.
|
||||
self.after_norm = identity
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
||||
x_lens:
|
||||
A tensor of shape (batch_size,) containing the number of frames in
|
||||
`x` before padding.
|
||||
Returns:
|
||||
Return a tuple containing 2 tensors:
|
||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||
of frames in `logits` before padding.
|
||||
"""
|
||||
if self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||
assert x.size(0) == lengths.max().item()
|
||||
mask = make_pad_mask(lengths)
|
||||
|
||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
|
||||
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
|
||||
logits = self.encoder_output_layer(x)
|
||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
return logits, lengths
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the input (required).
|
||||
nhead: the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
normalize_before: whether to use layer_norm before the first block.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = encoder_layer(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
) -> None:
|
||||
super(ConformerEncoderLayer, self).__init__()
|
||||
self.self_attn = RelPositionMultiheadAttention(
|
||||
d_model, nhead, dropout=0.0
|
||||
)
|
||||
|
||||
self.feed_forward = nn.Sequential(
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
Swish(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
||||
self.feed_forward_macaron = nn.Sequential(
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
Swish(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||
|
||||
self.norm_ff_macaron = nn.LayerNorm(
|
||||
d_model
|
||||
) # for the macaron style FNN module
|
||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||
|
||||
self.ff_scale = 0.5
|
||||
|
||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||
self.norm_final = nn.LayerNorm(
|
||||
d_model
|
||||
) # for the final output of the block
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, N is the batch size, E is the feature number
|
||||
"""
|
||||
|
||||
# macaron style feed forward module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_ff_macaron(src)
|
||||
src = residual + self.ff_scale * self.dropout(
|
||||
self.feed_forward_macaron(src)
|
||||
)
|
||||
if not self.normalize_before:
|
||||
src = self.norm_ff_macaron(src)
|
||||
|
||||
# multi-headed self-attention module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_mha(src)
|
||||
src_att = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
pos_emb=pos_emb,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = residual + self.dropout(src_att)
|
||||
if not self.normalize_before:
|
||||
src = self.norm_mha(src)
|
||||
|
||||
# convolution module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_conv(src)
|
||||
src = residual + self.dropout(self.conv_module(src))
|
||||
if not self.normalize_before:
|
||||
src = self.norm_conv(src)
|
||||
|
||||
# feed forward module
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm_ff(src)
|
||||
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||
if not self.normalize_before:
|
||||
src = self.norm_ff(src)
|
||||
|
||||
if self.normalize_before:
|
||||
src = self.norm_final(src)
|
||||
|
||||
return src
|
||||
|
||||
|
||||
class ConformerEncoder(nn.TransformerEncoder):
|
||||
r"""ConformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = conformer_encoder(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||
) -> None:
|
||||
super(ConformerEncoder, self).__init__(
|
||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||
|
||||
"""
|
||||
output = src
|
||||
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module.
|
||||
|
||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||
|
||||
Args:
|
||||
d_model: Embedding dimension.
|
||||
dropout_rate: Dropout rate.
|
||||
max_len: Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
||||
) -> None:
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(RelPositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x: Tensor) -> None:
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
||||
x.device
|
||||
):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2
|
||||
- x.size(1)
|
||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||
+ x.size(1),
|
||||
]
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
|
||||
class RelPositionMultiheadAttention(nn.Module):
|
||||
r"""Multi-Head Attention layer with relative position encoding
|
||||
|
||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||
|
||||
# linear transformation for positional encoding.
|
||||
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. When given a binary mask and a value is True,
|
||||
the corresponding value on the attention layer will be ignored. When given
|
||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||
layer will be ignored
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
- Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
- Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
return self.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
pos_emb,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj.weight,
|
||||
self.in_proj.bias,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
|
||||
def rel_shift(self, x: Tensor) -> Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||
time1 means the length of query vector.
|
||||
|
||||
Returns:
|
||||
Tensor: tensor of shape (batch, head, time1, time2)
|
||||
(note: time2 has the same value as time1, but it is for
|
||||
the key, while time1 is for the query).
|
||||
"""
|
||||
(batch_size, num_heads, time1, n) = x.shape
|
||||
assert n == 2 * time1 - 1
|
||||
# Note: TorchScript requires explicit arg for stride()
|
||||
batch_stride = x.stride(0)
|
||||
head_stride = x.stride(1)
|
||||
time1_stride = x.stride(2)
|
||||
n_stride = x.stride(3)
|
||||
return x.as_strided(
|
||||
(batch_size, num_heads, time1, time1),
|
||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||
storage_offset=n_stride * (time1 - 1),
|
||||
)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Tensor,
|
||||
in_proj_bias: Tensor,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Tensor,
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||
length, N is the batch size, E is the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
|
||||
tgt_len, bsz, embed_dim = query.size()
|
||||
assert embed_dim == embed_dim_to_check
|
||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||
|
||||
head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
scaling = float(head_dim) ** -0.5
|
||||
|
||||
if torch.equal(query, key) and torch.equal(key, value):
|
||||
# self-attention
|
||||
q, k, v = nn.functional.linear(
|
||||
query, in_proj_weight, in_proj_bias
|
||||
).chunk(3, dim=-1)
|
||||
|
||||
elif torch.equal(key, value):
|
||||
# encoder-decoder attention
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||
|
||||
else:
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = embed_dim * 2
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
k = nn.functional.linear(key, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim * 2
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
or attn_mask.dtype == torch.float64
|
||||
or attn_mask.dtype == torch.float16
|
||||
or attn_mask.dtype == torch.uint8
|
||||
or attn_mask.dtype == torch.bool
|
||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||
attn_mask.dtype
|
||||
)
|
||||
if attn_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
attn_mask = attn_mask.to(torch.bool)
|
||||
|
||||
if attn_mask.dim() == 2:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||
raise RuntimeError(
|
||||
"The size of the 2D attn_mask is not correct."
|
||||
)
|
||||
elif attn_mask.dim() == 3:
|
||||
if list(attn_mask.size()) != [
|
||||
bsz * num_heads,
|
||||
query.size(0),
|
||||
key.size(0),
|
||||
]:
|
||||
raise RuntimeError(
|
||||
"The size of the 3D attn_mask is not correct."
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"attn_mask's dimension {} is not supported".format(
|
||||
attn_mask.dim()
|
||||
)
|
||||
)
|
||||
# attn_mask's dim is 3 now.
|
||||
|
||||
# convert ByteTensor key_padding_mask to bool
|
||||
if (
|
||||
key_padding_mask is not None
|
||||
and key_padding_mask.dtype == torch.uint8
|
||||
):
|
||||
warnings.warn(
|
||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||
|
||||
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
src_len = k.size(0)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||
key_padding_mask.size(0), bsz
|
||||
)
|
||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||
key_padding_mask.size(1), src_len
|
||||
)
|
||||
|
||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||
|
||||
pos_emb_bsz = pos_emb.size(0)
|
||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||
matrix_ac = torch.matmul(
|
||||
q_with_bias_u, k
|
||||
) # (batch, head, time1, time2)
|
||||
|
||||
# compute matrix b and matrix d
|
||||
matrix_bd = torch.matmul(
|
||||
q_with_bias_v, p.transpose(-2, -1)
|
||||
) # (batch, head, time1, 2*time1-1)
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
attn_output_weights = (
|
||||
matrix_ac + matrix_bd
|
||||
) * scaling # (batch, head, time1, time2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, -1
|
||||
)
|
||||
|
||||
assert list(attn_output_weights.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
src_len,
|
||||
]
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_output_weights += attn_mask
|
||||
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(
|
||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||
float("-inf"),
|
||||
)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||
attn_output_weights = nn.functional.dropout(
|
||||
attn_output_weights, p=dropout_p, training=training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1)
|
||||
.contiguous()
|
||||
.view(tgt_len, bsz, embed_dim)
|
||||
)
|
||||
attn_output = nn.functional.linear(
|
||||
attn_output, out_proj_weight, out_proj_bias
|
||||
)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||
else:
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model.
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernerl size of conv layers.
|
||||
bias (bool): Whether to use bias in conv layers (default=True).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, channels: int, kernel_size: int, bias: bool = True
|
||||
) -> None:
|
||||
"""Construct an ConvolutionModule object."""
|
||||
super(ConvolutionModule, self).__init__()
|
||||
# kernerl_size should be a odd number for 'SAME' padding
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
self.norm = nn.BatchNorm1d(channels)
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.activation = Swish()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Compute convolution module.
|
||||
|
||||
Args:
|
||||
x: Input tensor (#time, batch, channels).
|
||||
|
||||
Returns:
|
||||
Tensor: Output tensor (#time, batch, channels).
|
||||
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
x = self.activation(self.norm(x))
|
||||
|
||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||
|
||||
return x.permute(2, 0, 1)
|
||||
|
||||
|
||||
class Swish(torch.nn.Module):
|
||||
"""Construct an Swish object."""
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return Swich activation function."""
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def identity(x):
|
||||
return x
|
65
egs/librispeech/ASR/transducer_stateless/decoder.py
Normal file
65
egs/librispeech/ASR/transducer_stateless/decoder.py
Normal file
@ -0,0 +1,65 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""This class implements the stateless decoder from the following paper:
|
||||
|
||||
RNN-transducer with stateless prediction network
|
||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||
|
||||
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||
network.
|
||||
|
||||
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
blank_id: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Number of tokens of the modeling unit including blank.
|
||||
embedding_dim:
|
||||
Dimension of the input embedding.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
"""
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
padding_idx=blank_id,
|
||||
)
|
||||
self.blank_id = blank_id
|
||||
|
||||
def forward(self, y: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, U) with blank prepended.
|
||||
Returns:
|
||||
Return a tensor of shape (N, U, embedding_dim).
|
||||
"""
|
||||
embeding_out = self.embedding(y)
|
||||
return embeding_out
|
@ -0,0 +1,43 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class EncoderInterface(nn.Module):
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||
containing the input features.
|
||||
x_lens:
|
||||
A tensor of shape (batch_size,) containing the number of frames
|
||||
in `x` before padding.
|
||||
Returns:
|
||||
Return a tuple containing two tensors:
|
||||
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||
containing unnormalized probabilities, i.e., the output of a
|
||||
linear layer.
|
||||
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||
the number of frames in `encoder_out` before padding.
|
||||
"""
|
||||
raise NotImplementedError("Please implement it in a subclass")
|
55
egs/librispeech/ASR/transducer_stateless/joiner.py
Normal file
55
egs/librispeech/ASR/transducer_stateless/joiner.py
Normal file
@ -0,0 +1,55 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Joiner(nn.Module):
|
||||
def __init__(self, input_dim: int, output_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.output_linear = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(
|
||||
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C).
|
||||
decoder_out:
|
||||
Output from the decoder. Its shape is (N, U, C).
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, U, C).
|
||||
"""
|
||||
assert encoder_out.ndim == decoder_out.ndim == 3
|
||||
assert encoder_out.size(0) == decoder_out.size(0)
|
||||
assert encoder_out.size(2) == decoder_out.size(2)
|
||||
|
||||
encoder_out = encoder_out.unsqueeze(2)
|
||||
# Now encoder_out is (N, T, 1, C)
|
||||
|
||||
decoder_out = decoder_out.unsqueeze(1)
|
||||
# Now decoder_out is (N, 1, U, C)
|
||||
|
||||
logit = encoder_out + decoder_out
|
||||
logit = F.relu(logit)
|
||||
|
||||
output = self.output_linear(logit)
|
||||
|
||||
return output
|
125
egs/librispeech/ASR/transducer_stateless/model.py
Normal file
125
egs/librispeech/ASR/transducer_stateless/model.py
Normal file
@ -0,0 +1,125 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Note we use `rnnt_loss` from torchaudio, which exists only in
|
||||
torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
|
||||
"""
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
import torchaudio.functional
|
||||
from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: EncoderInterface,
|
||||
decoder: nn.Module,
|
||||
joiner: nn.Module,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
It is the transcription network in the paper. Its accepts
|
||||
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
|
||||
It returns two tensors: `logits` of shape (N, T, C) and
|
||||
`logit_lens` of shape (N,).
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, C). It should contain
|
||||
one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||
output shape is (N, T, U, C). Note that its output contains
|
||||
unnormalized probs, i.e., not processed by log-softmax.
|
||||
"""
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
"""
|
||||
assert x.ndim == 3, x.shape
|
||||
assert x_lens.ndim == 1, x_lens.shape
|
||||
assert y.num_axes == 2, y.num_axes
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
encoder_out, x_lens = self.encoder(x, x_lens)
|
||||
assert torch.all(x_lens > 0)
|
||||
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
logits = self.joiner(encoder_out, decoder_out)
|
||||
|
||||
# rnnt_loss requires 0 padded targets
|
||||
# Note: y does not start with SOS
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
loss = torchaudio.functional.rnnt_loss(
|
||||
logits=logits,
|
||||
targets=y_padded,
|
||||
logit_lengths=x_lens,
|
||||
target_lengths=y_lens,
|
||||
blank=blank_id,
|
||||
reduction="sum",
|
||||
)
|
||||
|
||||
return loss
|
1
egs/librispeech/ASR/transducer_stateless/subsampling.py
Symbolic link
1
egs/librispeech/ASR/transducer_stateless/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../transducer/subsampling.py
|
734
egs/librispeech/ASR/transducer_stateless/train.py
Executable file
734
egs/librispeech/ASR/transducer_stateless/train.py
Executable file
@ -0,0 +1,734 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer_stateless/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer_stateless/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--lr-factor 2.5
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import Transducer
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=78,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
transducer_stateless/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-factor",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="The lr_factor for Noam optimizer",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- use_feat_batchnorm: Whether to do batch normalization for the
|
||||
input features.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 3000, # For the 100h subset, use 800
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# parameters for Noam
|
||||
"weight_decay": 1e-6,
|
||||
"warm_step": 80000, # For the 100h subset, use 8k
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict):
|
||||
# TODO: We can add an option to switch between Conformer and Transformer
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict):
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict):
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = sp.encode(texts, out_type=int)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
loss = model(x=feature, x_lens=feature_lens, y=y)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
if params.full_libri is False:
|
||||
params.valid_interval = 800
|
||||
params.warm_step = 8000
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model.device = device
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
|
||||
num_in_total = len(train_cuts)
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
num_left = len(train_cuts)
|
||||
num_removed = num_in_total - num_left
|
||||
removed_percent = num_removed / num_in_total * 100
|
||||
|
||||
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||
logging.info(f"After removing short and long utterances: {num_left}")
|
||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||
|
||||
train_dl = librispeech.train_dataloaders(train_cuts)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts()
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
429
egs/librispeech/ASR/transducer_stateless/transformer.py
Normal file
429
egs/librispeech/ASR/transducer_stateless/transformer.py
Normal file
@ -0,0 +1,429 @@
|
||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transducer.encoder_interface import EncoderInterface
|
||||
from transducer.subsampling import Conv2dSubsampling, VggSubsampling
|
||||
|
||||
from icefall.utils import make_pad_mask
|
||||
|
||||
|
||||
class Transformer(EncoderInterface):
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
output_dim: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
dropout: float = 0.1,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
output_dim:
|
||||
The output dimension of the model.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
Currently, subsampling_factor MUST be 4.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
Must satisfy d_model // nhead == 0.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
dropout:
|
||||
Dropout in encoder.
|
||||
normalize_before:
|
||||
If True, use pre-layer norm; False to use post-layer norm.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
use_feat_batchnorm:
|
||||
True to use batchnorm for the input layer.
|
||||
"""
|
||||
super().__init__()
|
||||
self.use_feat_batchnorm = use_feat_batchnorm
|
||||
if use_feat_batchnorm:
|
||||
self.feat_batchnorm = nn.BatchNorm1d(num_features)
|
||||
|
||||
self.num_features = num_features
|
||||
self.output_dim = output_dim
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_features -> d_model
|
||||
if vgg_frontend:
|
||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
if normalize_before:
|
||||
encoder_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
encoder_norm = None
|
||||
|
||||
self.encoder = nn.TransformerEncoder(
|
||||
encoder_layer=encoder_layer,
|
||||
num_layers=num_encoder_layers,
|
||||
norm=encoder_norm,
|
||||
)
|
||||
|
||||
# TODO(fangjun): remove dropout
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
||||
x_lens:
|
||||
A tensor of shape (batch_size,) containing the number of frames in
|
||||
`x` before padding.
|
||||
Returns:
|
||||
Return a tuple containing 2 tensors:
|
||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||
of frames in `logits` before padding.
|
||||
"""
|
||||
if self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
x = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||
assert x.size(0) == lengths.max().item()
|
||||
|
||||
mask = make_pad_mask(lengths)
|
||||
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
||||
|
||||
logits = self.encoder_output_layer(x)
|
||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
return logits, lengths
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
Modified from torch.nn.TransformerEncoderLayer.
|
||||
Add support of normalize_before,
|
||||
i.e., use layer_norm before the first block.
|
||||
|
||||
Args:
|
||||
d_model:
|
||||
the number of expected features in the input (required).
|
||||
nhead:
|
||||
the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward:
|
||||
the dimension of the feedforward network model (default=2048).
|
||||
dropout:
|
||||
the dropout value (default=0.1).
|
||||
activation:
|
||||
the activation function of intermediate layer, relu or
|
||||
gelu (default=relu).
|
||||
normalize_before:
|
||||
whether to use layer_norm before the first block.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = encoder_layer(src)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: str = "relu",
|
||||
normalize_before: bool = True,
|
||||
) -> None:
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def __setstate__(self, state):
|
||||
if "activation" not in state:
|
||||
state["activation"] = nn.functional.relu
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: Optional[torch.Tensor] = None,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional)
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length,
|
||||
N is the batch size, E is the feature number
|
||||
"""
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm1(src)
|
||||
src2 = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = residual + self.dropout1(src2)
|
||||
if not self.normalize_before:
|
||||
src = self.norm1(src)
|
||||
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm2(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||
src = residual + self.dropout2(src2)
|
||||
if not self.normalize_before:
|
||||
src = self.norm2(src)
|
||||
return src
|
||||
|
||||
|
||||
def _get_activation_fn(activation: str):
|
||||
if activation == "relu":
|
||||
return nn.functional.relu
|
||||
elif activation == "gelu":
|
||||
return nn.functional.gelu
|
||||
|
||||
raise RuntimeError(
|
||||
"activation should be relu/gelu, not {}".format(activation)
|
||||
)
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
"""This class implements the positional encoding
|
||||
proposed in the following paper:
|
||||
|
||||
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
||||
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
||||
|
||||
Note::
|
||||
|
||||
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
||||
= exp(-1* 2i / d_model * log(100000))
|
||||
= exp(2i * -(log(10000) / d_model))
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
||||
"""
|
||||
Args:
|
||||
d_model:
|
||||
Embedding dimension.
|
||||
dropout:
|
||||
Dropout probability to be applied to the output of this module.
|
||||
"""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
# not doing: self.pe = None because of errors thrown by torchscript
|
||||
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
||||
|
||||
def extend_pe(self, x: torch.Tensor) -> None:
|
||||
"""Extend the time t in the positional encoding if required.
|
||||
|
||||
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||
to (N, T, d_model). Otherwise, nothing is done.
|
||||
|
||||
Args:
|
||||
x:
|
||||
It is a tensor of shape (N, T, C).
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Add positional encoding.
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is (N, T, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, C)
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
Loading…
x
Reference in New Issue
Block a user