mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 09:04:19 +00:00
format
This commit is contained in:
parent
3705a58624
commit
f626ec849b
@ -16,16 +16,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Tuple, List
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from multi_quantization.prediction import JointCodebookLoss
|
||||
from scaling import ScaledLinear
|
||||
|
||||
from icefall.utils import add_sos, make_pad_mask
|
||||
from scaling import ScaledLinear
|
||||
|
||||
|
||||
class AsrModel(nn.Module):
|
||||
@ -141,8 +141,8 @@ class AsrModel(nn.Module):
|
||||
Encoder output, of shape (N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (N,).
|
||||
saved_embeddings:
|
||||
The embeddings from the middle layers
|
||||
saved_embeddings:
|
||||
The embeddings from the middle layers
|
||||
"""
|
||||
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
|
||||
x, x_lens = self.encoder_embed(x, x_lens)
|
||||
@ -151,7 +151,9 @@ class AsrModel(nn.Module):
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens, middle_out = self.encoder(x, x_lens, src_key_padding_mask)
|
||||
encoder_out, encoder_out_lens, middle_out = self.encoder(
|
||||
x, x_lens, src_key_padding_mask
|
||||
)
|
||||
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
|
||||
@ -324,9 +326,9 @@ class AsrModel(nn.Module):
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
codebook_indexes:
|
||||
The codebook indexes to be predicted. Only used when doing knowledge
|
||||
distillation with MVQ
|
||||
codebook_indexes:
|
||||
The codebook indexes to be predicted. Only used when doing knowledge
|
||||
distillation with MVQ
|
||||
Returns:
|
||||
Return the transducer losses and CTC loss, and potentially codebook loss
|
||||
in form of (simple_loss, pruned_loss, ctc_loss, codebook_loss)
|
||||
@ -379,9 +381,9 @@ class AsrModel(nn.Module):
|
||||
if self.training and hasattr(self, "codebook_loss_net"):
|
||||
assert codebook_indexes is not None
|
||||
codebook_loss = self.forward_codebook(
|
||||
middle_out=middle_out,
|
||||
codebook_indexes=codebook_indexes,
|
||||
)
|
||||
middle_out=middle_out,
|
||||
codebook_indexes=codebook_indexes,
|
||||
)
|
||||
else:
|
||||
codebook_loss = torch.empty(0)
|
||||
|
||||
@ -394,21 +396,23 @@ class AsrModel(nn.Module):
|
||||
) -> torch.Tensor:
|
||||
"""Calculate the codebook loss for the model (knowledge distillation)
|
||||
|
||||
Args:
|
||||
middle_out (List[torch.Tensor]):
|
||||
The embeddings extracted from the middle layer of the zipformer encoder
|
||||
codebook_indexes (torch.Tensor):
|
||||
The encoded codebook indexes for knowledge distillation
|
||||
Args:
|
||||
middle_out (List[torch.Tensor]):
|
||||
The embeddings extracted from the middle layer of the zipformer encoder
|
||||
codebook_indexes (torch.Tensor):
|
||||
The encoded codebook indexes for knowledge distillation
|
||||
|
||||
Returns:
|
||||
The codebook loss value
|
||||
"""
|
||||
middle_layer_output = middle_out[0] # currently only support using output of one layer, (N,T,C)
|
||||
Returns:
|
||||
The codebook loss value
|
||||
"""
|
||||
middle_layer_output = middle_out[
|
||||
0
|
||||
] # currently only support using output of one layer, (N,T,C)
|
||||
len_CI = codebook_indexes.size(1)
|
||||
len_mid_layer = middle_layer_output.size(1)
|
||||
ratio = round(len_CI/len_mid_layer)
|
||||
ratio = round(len_CI / len_mid_layer)
|
||||
|
||||
if ratio == 1: # Having the same frame rate
|
||||
if ratio == 1: # Having the same frame rate
|
||||
assert len_CI > len_mid_layer, (len_CI, len_mid_layer)
|
||||
codebook_indexes = codebook_indexes[:, :len_mid_layer, :]
|
||||
assert codebook_indexes.size(1) == middle_layer_output.size(1)
|
||||
@ -426,9 +430,7 @@ class AsrModel(nn.Module):
|
||||
return codebook_loss
|
||||
|
||||
@staticmethod
|
||||
def concat_successive_codebook_indexes(
|
||||
middle_layer_output, codebook_indexes
|
||||
):
|
||||
def concat_successive_codebook_indexes(middle_layer_output, codebook_indexes):
|
||||
# Output rate of hubert is 50 frames per second,
|
||||
# while that of current encoder is 25.
|
||||
# Following code handling two issues:
|
||||
@ -448,10 +450,12 @@ class AsrModel(nn.Module):
|
||||
# Handling issue 1.
|
||||
if T >= t_expected * 2:
|
||||
codebook_indexes = codebook_indexes[:, : t_expected * 2, :]
|
||||
if T / t_expected < 1.1: # To be changed, dirty hack to jump out of this function
|
||||
codebook_indexes = codebook_indexes[:, : t_expected, :]
|
||||
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
|
||||
return codebook_indexes
|
||||
if (
|
||||
T / t_expected < 1.1
|
||||
): # To be changed, dirty hack to jump out of this function
|
||||
codebook_indexes = codebook_indexes[:, :t_expected, :]
|
||||
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
|
||||
return codebook_indexes
|
||||
# Handling issue 2.
|
||||
codebook_indexes = codebook_indexes.reshape(N, t_expected, C * 2)
|
||||
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
|
||||
|
@ -636,11 +636,11 @@ def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
|
||||
|
||||
def get_model(params: AttributeDict) -> nn.Module:
|
||||
assert (
|
||||
params.use_transducer or params.use_ctc
|
||||
), (f"At least one of them should be True, "
|
||||
assert params.use_transducer or params.use_ctc, (
|
||||
f"At least one of them should be True, "
|
||||
f"but got params.use_transducer={params.use_transducer}, "
|
||||
f"params.use_ctc={params.use_ctc}")
|
||||
f"params.use_ctc={params.use_ctc}"
|
||||
)
|
||||
|
||||
encoder_embed = get_encoder_embed(params)
|
||||
encoder = get_encoder_model(params)
|
||||
@ -783,17 +783,17 @@ def save_checkpoint(
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def extract_codebook_indexes(batch: Dict) -> Tuple[Tensor, Tensor]:
|
||||
cuts = batch["supervisions"]["cut"]
|
||||
# -100 is identical to ignore_value in CE loss computation.
|
||||
cuts_pre_mixed = [
|
||||
c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts
|
||||
]
|
||||
cuts_pre_mixed = [c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts]
|
||||
codebook_indexes, codebook_indexes_lens = collate_custom_field(
|
||||
cuts_pre_mixed, "codebook_indexes", pad_value=-100
|
||||
)
|
||||
return codebook_indexes, codebook_indexes_lens
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
@ -859,17 +859,16 @@ def compute_loss(
|
||||
# take down the scale on the simple loss from 1.0 at the start
|
||||
# to params.simple_loss scale by warm_step.
|
||||
simple_loss_scale = (
|
||||
s if batch_idx_train >= warm_step
|
||||
s
|
||||
if batch_idx_train >= warm_step
|
||||
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
|
||||
)
|
||||
pruned_loss_scale = (
|
||||
1.0 if batch_idx_train >= warm_step
|
||||
1.0
|
||||
if batch_idx_train >= warm_step
|
||||
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
||||
)
|
||||
loss += (
|
||||
simple_loss_scale * simple_loss
|
||||
+ pruned_loss_scale * pruned_loss
|
||||
)
|
||||
loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||
|
||||
if params.use_ctc:
|
||||
loss += params.ctc_loss_scale * ctc_loss
|
||||
@ -1164,7 +1163,9 @@ def run(rank, world_size, args):
|
||||
# Note: it's better to set --spec-aug-time-warpi-factor=-1
|
||||
# when doing distillation with vq.
|
||||
if params.enable_distillation:
|
||||
assert args.spec_aug_time_warp_factor < 1, "Specaug should be disabled during distillation"
|
||||
assert (
|
||||
args.spec_aug_time_warp_factor < 1
|
||||
), "Specaug should be disabled during distillation"
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user