Support LG for pruned_transducer_stateless2.

This commit is contained in:
Fangjun Kuang 2022-06-21 21:55:08 +08:00
parent 136ee53447
commit f5af662b7b
3 changed files with 228 additions and 48 deletions

View File

@ -213,7 +213,7 @@ def get_parser():
parser.add_argument(
"--beam",
type=float,
default=8.0,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
@ -236,7 +236,7 @@ def get_parser():
parser.add_argument(
"--max-contexts",
type=int,
default=4,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
@ -320,7 +320,8 @@ def decode_one_batch(
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.

View File

@ -74,6 +74,122 @@ def fast_beam_search_one_best(
return hyps
def fast_beam_search_nbest_LG(
model: Transducer,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
num_paths: int,
nbest_scale: float = 0.5,
use_double_scores: bool = True,
) -> List[List[int]]:
"""It limits the maximum number of symbols per frame to 1.
The process to get the results is:
- (1) Use fast beam search to get a lattice
- (2) Select `num_paths` paths from the lattice using k2.random_paths()
- (3) Unique the selected paths
- (4) Intersect the selected paths with the lattice and compute the
shortest path from the intersection result
- (5) The path with the largest score is used as the decoding output.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
num_paths:
Number of paths to extract from the decoded lattice.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
use_double_scores:
True to use double precision for computation. False to use
single precision.
Returns:
Return the decoded result.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# The following code is modified from nbest.intersect()
word_fsa = k2.invert(nbest.fsa)
if hasattr(lattice, "aux_labels"):
# delete token IDs as it is not needed
del word_fsa.aux_labels
word_fsa.scores.zero_()
word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa)
path_to_utt_map = nbest.shape.row_ids(1)
if hasattr(lattice, "aux_labels"):
# lattice has token IDs as labels and word IDs as aux_labels.
# inv_lattice has word IDs as labels and token IDs as aux_labels
inv_lattice = k2.invert(lattice)
inv_lattice = k2.arc_sort(inv_lattice)
else:
inv_lattice = k2.arc_sort(lattice)
if inv_lattice.shape[0] == 1:
path_lattice = k2.intersect_device(
inv_lattice,
word_fsa_with_epsilon_loops,
b_to_a_map=torch.zeros_like(path_to_utt_map),
sorted_match_a=True,
)
else:
path_lattice = k2.intersect_device(
inv_lattice,
word_fsa_with_epsilon_loops,
b_to_a_map=path_to_utt_map,
sorted_match_a=True,
)
# path_lattice has word IDs as labels and token IDs as aux_labels
path_lattice = k2.top_sort(k2.connect(path_lattice))
tot_scores = path_lattice.get_tot_scores(
use_double_scores=use_double_scores,
log_semiring=True, # Note: we always use True
)
# See https://github.com/k2-fsa/icefall/pull/420 for why
# we always use log_semiring=True
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
best_hyp_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, best_hyp_indexes)
hyps = get_texts(best_path)
return hyps
def fast_beam_search_nbest(
model: Transducer,
decoding_graph: k2.Fsa,

View File

@ -50,9 +50,9 @@ Usage:
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
--beam 20.0 \
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
./pruned_transducer_stateless2/decode.py \
@ -61,9 +61,9 @@ Usage:
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
@ -74,11 +74,22 @@ Usage:
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./pruned_transducer_stateless2/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
@ -96,6 +107,7 @@ from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
@ -109,6 +121,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
@ -175,6 +188,9 @@ def get_parser():
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
@ -190,31 +206,42 @@ def get_parser():
parser.add_argument(
"--beam",
type=float,
default=4,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, or
fast_beam_search_nbest_oracle""",
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.01,
help="""
Used only when --decoding_method is fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, or
fast_beam_search_nbest_oracle""",
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, or
fast_beam_search_nbest_oracle""",
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
@ -237,9 +264,8 @@ def get_parser():
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest or
fast_beam_search_nbest_oracle
""",
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
@ -247,9 +273,8 @@ def get_parser():
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest or
fast_beam_search_nbest_oracle
""",
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
return parser
@ -260,6 +285,7 @@ def decode_one_batch(
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
@ -283,10 +309,12 @@ def decode_one_batch(
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search,
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
@ -318,6 +346,20 @@ def decode_one_batch(
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
@ -402,16 +444,17 @@ def decode_one_batch(
f"max_states_{params.max_states}"
): hyps
}
elif "fast_beam_search_nbest" in params.decoding_method:
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_"
f"num_paths_{params.num_paths}_"
f"nbest_scale_{params.nbest_scale}"
): hyps
}
elif "fast_beam_search" in params.decoding_method:
key = f"beam_{params.beam}_"
key += f"max_contexts_{params.max_contexts}_"
key += f"max_states_{params.max_states}"
if "nbest" in params.decoding_method:
key += f"num_paths_{params.num_paths}_"
key += f"nbest_scale_{params.nbest_scale}"
if "LG" in params.decoding_method:
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
@ -421,6 +464,7 @@ def decode_dataset(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
@ -434,6 +478,8 @@ def decode_dataset(
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search,
@ -465,6 +511,7 @@ def decode_dataset(
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
batch=batch,
)
@ -548,6 +595,7 @@ def main():
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
@ -558,16 +606,15 @@ def main():
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.decoding_method == "fast_beam_search":
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif "fast_beam_search_nbest" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
params.suffix += f"-num-paths-{params.num_paths}"
params.suffix += f"-nbest-scale-{params.nbest_scale}"
if "nbest" in params.decoding_method:
params.suffix += f"-nbest-scale-{params.nbest_scale}"
params.suffix += f"-num-paths-{params.num_paths}"
if "LG" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
@ -632,9 +679,23 @@ def main():
model.device = device
if "fast_beam_search" in params.decoding_method:
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(
params.vocab_size - 1, device=device
)
else:
decoding_graph = None
word_table = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
@ -656,6 +717,7 @@ def main():
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
)
@ -664,6 +726,7 @@ def main():
test_set_name=test_set,
results_dict=results_dict,
)
break
logging.info("Done!")