Use conformer/transformer model as encoder.

This commit is contained in:
Fangjun Kuang 2021-12-07 23:20:59 +08:00
parent f802758fca
commit f5199d37c4
9 changed files with 281 additions and 588 deletions

View File

@ -22,20 +22,21 @@ from typing import Optional, Tuple
import torch
from torch import Tensor, nn
from transformer import Supervisions, Transformer, encoder_padding_mask
from transducer.transformer import Transformer
from icefall.utils import make_pad_mask
class Conformer(Transformer):
"""
Args:
num_features (int): Number of input features
num_classes (int): Number of output classes
output_dim (int): Number of output dimension
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
d_model (int): attention dimension
nhead (int): number of head
dim_feedforward (int): feedforward dimention
num_encoder_layers (int): number of encoder layers
num_decoder_layers (int): number of decoder layers
dropout (float): dropout rate
cnn_module_kernel (int): Kernel size of convolution module
normalize_before (bool): whether to use layer_norm before the first block.
@ -45,13 +46,12 @@ class Conformer(Transformer):
def __init__(
self,
num_features: int,
num_classes: int,
output_dim: int,
subsampling_factor: int = 4,
d_model: int = 256,
nhead: int = 4,
dim_feedforward: int = 2048,
num_encoder_layers: int = 12,
num_decoder_layers: int = 6,
dropout: float = 0.1,
cnn_module_kernel: int = 31,
normalize_before: bool = True,
@ -60,13 +60,12 @@ class Conformer(Transformer):
) -> None:
super(Conformer, self).__init__(
num_features=num_features,
num_classes=num_classes,
output_dim=output_dim,
subsampling_factor=subsampling_factor,
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dropout=dropout,
normalize_before=normalize_before,
vgg_frontend=vgg_frontend,
@ -92,38 +91,45 @@ class Conformer(Transformer):
# and throws an error without this change.
self.after_norm = identity
def run_encoder(
self, x: Tensor, supervisions: Optional[Supervisions] = None
) -> Tuple[Tensor, Optional[Tensor]]:
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
The model input. Its shape is (N, T, C).
supervisions:
Supervision in lhotse format.
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
CAUTION: It contains length information, i.e., start and number of
frames, before subsampling
It is read directly from the batch, without any sorting. It is used
to compute encoder padding mask, which is used as memory key padding
mask for the decoder.
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
Returns:
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
Tensor: Mask tensor of dimension (batch_size, input_length)
Return a tuple containing 2 tensors:
- logits, its shape is (batch_size, output_seq_len, output_dim)
- logit_lens, a tensor of shape (batch_size,) containing the number
of frames in `logits` before padding.
"""
if self.use_feat_batchnorm:
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
x = self.feat_batchnorm(x)
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
x = self.encoder_embed(x)
x, pos_emb = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
mask = encoder_padding_mask(x.size(0), supervisions)
if mask is not None:
mask = mask.to(x.device)
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
# Caution: We assume the subsampling factor is 4!
lengths = ((x_lens - 1) // 2 - 1) // 2
assert x.size(0) == lengths.max().item()
mask = make_pad_mask(lengths)
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
if self.normalize_before:
x = self.after_norm(x)
return x, mask
logits = self.encoder_output_layer(x)
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return logits, lengths
class ConformerEncoderLayer(nn.Module):

View File

@ -21,16 +21,6 @@ import torch.nn as nn
class EncoderInterface(nn.Module):
def __init__(self, num_features: int, output_dim: int):
"""
Args:
num_features:
The dimension of the input features.
output_dim:
Output dimension of the model.
"""
super().__init__()
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:

View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer/test_conformer.py
"""
import torch
from transducer.conformer import Conformer
def test_conformer():
output_dim = 1024
conformer = Conformer(
num_features=80,
output_dim=output_dim,
subsampling_factor=4,
d_model=512,
nhead=8,
dim_feedforward=2048,
num_encoder_layers=12,
use_feat_batchnorm=True,
)
N = 3
T = 100
C = 80
x = torch.randn(N, T, C)
x_lens = torch.tensor([50, 100, 80])
logits, logit_lens = conformer(x, x_lens)
expected_T = ((T - 1) // 2 - 1) // 2
assert logits.shape == (N, expected_T, output_dim)
assert logit_lens.max().item() == expected_T
print(logits.shape)
print(logit_lens)
def main():
test_conformer()
if __name__ == "__main__":
main()

View File

@ -18,7 +18,7 @@
"""
To run this file, do:
cd icefall/egs/yesno/ASR
cd icefall/egs/librispeech/ASR
python ./transducer/test_decoder.py
"""

View File

@ -18,7 +18,7 @@
"""
To run this file, do:
cd icefall/egs/yesno/ASR
cd icefall/egs/librispeech/ASR
python ./transducer/test_joiner.py
"""

View File

@ -15,6 +15,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer/test_rnn.py
"""
import torch
import torch.nn as nn
from transducer.rnn import (

View File

@ -0,0 +1,88 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer/test_transducer.py
"""
import k2
import torch
from transducer.conformer import Conformer
from transducer.decoder import Decoder
from transducer.joiner import Joiner
from transducer.model import Transducer
def test_transducer():
# encoder params
input_dim = 10
output_dim = 20
# decoder params
vocab_size = 3
blank_id = 0
sos_id = 2
embedding_dim = 128
num_layers = 2
encoder = Conformer(
num_features=input_dim,
output_dim=output_dim,
subsampling_factor=4,
d_model=512,
nhead=8,
dim_feedforward=2048,
num_encoder_layers=12,
use_feat_batchnorm=True,
)
decoder = Decoder(
vocab_size=vocab_size,
embedding_dim=embedding_dim,
blank_id=blank_id,
sos_id=sos_id,
num_layers=num_layers,
hidden_dim=output_dim,
embedding_dropout=0.0,
rnn_dropout=0.0,
)
joiner = Joiner(output_dim, vocab_size)
transducer = Transducer(encoder=encoder, decoder=decoder, joiner=joiner)
y = k2.RaggedTensor([[1, 2, 1], [1, 1, 1, 2, 1]])
N = y.dim0
T = 50
x = torch.rand(N, T, input_dim)
x_lens = torch.randint(low=30, high=T, size=(N,), dtype=torch.int32)
x_lens[0] = T
loss = transducer(x, x_lens, y)
print(loss)
def main():
test_transducer()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer/test_transformer.py
"""
import torch
from transducer.transformer import Transformer
def test_transformer():
output_dim = 1024
transformer = Transformer(
num_features=80,
output_dim=output_dim,
subsampling_factor=4,
d_model=512,
nhead=8,
dim_feedforward=2048,
num_encoder_layers=12,
use_feat_batchnorm=True,
)
N = 3
T = 100
C = 80
x = torch.randn(N, T, C)
x_lens = torch.tensor([50, 100, 80])
logits, logit_lens = transformer(x, x_lens)
expected_T = ((T - 1) // 2 - 1) // 2
assert logits.shape == (N, expected_T, output_dim)
assert logit_lens.max().item() == expected_T
print(logits.shape)
print(logit_lens)
def main():
test_transformer()
if __name__ == "__main__":
main()

View File

@ -16,29 +16,26 @@
import math
from typing import Dict, List, Optional, Tuple
from typing import Optional, Tuple
import torch
import torch.nn as nn
from label_smoothing import LabelSmoothingLoss
from subsampling import Conv2dSubsampling, VggSubsampling
from torch.nn.utils.rnn import pad_sequence
from transducer.encoder_interface import EncoderInterface
# Note: TorchScript requires Dict/List/etc. to be fully typed.
Supervisions = Dict[str, torch.Tensor]
from icefall.utils import make_pad_mask
class Transformer(nn.Module):
class Transformer(EncoderInterface):
def __init__(
self,
num_features: int,
num_classes: int,
output_dim: int,
subsampling_factor: int = 4,
d_model: int = 256,
nhead: int = 4,
dim_feedforward: int = 2048,
num_encoder_layers: int = 12,
num_decoder_layers: int = 6,
dropout: float = 0.1,
normalize_before: bool = True,
vgg_frontend: bool = False,
@ -48,7 +45,7 @@ class Transformer(nn.Module):
Args:
num_features:
The input dimension of the model.
num_classes:
output_dim:
The output dimension of the model.
subsampling_factor:
Number of output frames is num_in_frames // subsampling_factor.
@ -59,13 +56,11 @@ class Transformer(nn.Module):
Number of heads in multi-head attention.
Must satisfy d_model // nhead == 0.
dim_feedforward:
The output dimension of the feedforward layers in encoder/decoder.
The output dimension of the feedforward layers in encoder.
num_encoder_layers:
Number of encoder layers.
num_decoder_layers:
Number of decoder layers.
dropout:
Dropout in encoder/decoder.
Dropout in encoder.
normalize_before:
If True, use pre-layer norm; False to use post-layer norm.
vgg_frontend:
@ -79,16 +74,16 @@ class Transformer(nn.Module):
self.feat_batchnorm = nn.BatchNorm1d(num_features)
self.num_features = num_features
self.num_classes = num_classes
self.output_dim = output_dim
self.subsampling_factor = subsampling_factor
if subsampling_factor != 4:
raise NotImplementedError("Support only 'subsampling_factor=4'.")
# self.encoder_embed converts the input of shape (N, T, num_classes)
# self.encoder_embed converts the input of shape (N, T, num_features)
# to the shape (N, T//subsampling_factor, d_model).
# That is, it does two things simultaneously:
# (1) subsampling: T -> T//subsampling_factor
# (2) embedding: num_classes -> d_model
# (2) embedding: num_features -> d_model
if vgg_frontend:
self.encoder_embed = VggSubsampling(num_features, d_model)
else:
@ -117,279 +112,45 @@ class Transformer(nn.Module):
# TODO(fangjun): remove dropout
self.encoder_output_layer = nn.Sequential(
nn.Dropout(p=dropout), nn.Linear(d_model, num_classes)
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
)
if num_decoder_layers > 0:
self.decoder_num_class = (
self.num_classes
) # bpe model already has sos/eos symbol
self.decoder_embed = nn.Embedding(
num_embeddings=self.decoder_num_class, embedding_dim=d_model
)
self.decoder_pos = PositionalEncoding(d_model, dropout)
decoder_layer = TransformerDecoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
normalize_before=normalize_before,
)
if normalize_before:
decoder_norm = nn.LayerNorm(d_model)
else:
decoder_norm = None
self.decoder = nn.TransformerDecoder(
decoder_layer=decoder_layer,
num_layers=num_decoder_layers,
norm=decoder_norm,
)
self.decoder_output_layer = torch.nn.Linear(
d_model, self.decoder_num_class
)
self.decoder_criterion = LabelSmoothingLoss()
else:
self.decoder_criterion = None
def forward(
self, x: torch.Tensor, supervision: Optional[Supervisions] = None
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
The input tensor. Its shape is (N, T, C).
supervision:
Supervision in lhotse format.
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
(CAUTION: It contains length information, i.e., start and number of
frames, before subsampling)
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
Returns:
Return a tuple containing 3 tensors:
- CTC output for ctc decoding. Its shape is (N, T, C)
- Encoder output with shape (T, N, C). It can be used as key and
value for the decoder.
- Encoder output padding mask. It can be used as
memory_key_padding_mask for the decoder. Its shape is (N, T).
It is None if `supervision` is None.
Return a tuple containing 2 tensors:
- logits, its shape is (batch_size, output_seq_len, output_dim)
- logit_lens, a tensor of shape (batch_size,) containing the number
of frames in `logits` before padding.
"""
if self.use_feat_batchnorm:
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
x = self.feat_batchnorm(x)
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
encoder_memory, memory_key_padding_mask = self.run_encoder(
x, supervision
)
x = self.ctc_output(encoder_memory)
return x, encoder_memory, memory_key_padding_mask
def run_encoder(
self, x: torch.Tensor, supervisions: Optional[Supervisions] = None
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Run the transformer encoder.
Args:
x:
The model input. Its shape is (N, T, C).
supervisions:
Supervision in lhotse format.
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
CAUTION: It contains length information, i.e., start and number of
frames, before subsampling
It is read directly from the batch, without any sorting. It is used
to compute the encoder padding mask, which is used as memory key
padding mask for the decoder.
Returns:
Return a tuple with two tensors:
- The encoder output, with shape (T, N, C)
- encoder padding mask, with shape (N, T).
The mask is None if `supervisions` is None.
It is used as memory key padding mask in the decoder.
"""
x = self.encoder_embed(x)
x = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
mask = encoder_padding_mask(x.size(0), supervisions)
mask = mask.to(x.device) if mask is not None else None
# Caution: We assume the subsampling factor is 4!
lengths = ((x_lens - 1) // 2 - 1) // 2
assert x.size(0) == lengths.max().item()
mask = make_pad_mask(lengths)
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
return x, mask
logits = self.encoder_output_layer(x)
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
The output tensor from the transformer encoder.
Its shape is (T, N, C)
Returns:
Return a tensor that can be used for CTC decoding.
Its shape is (N, T, C)
"""
x = self.encoder_output_layer(x)
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
return x
@torch.jit.export
def decoder_forward(
self,
memory: torch.Tensor,
memory_key_padding_mask: torch.Tensor,
token_ids: List[List[int]],
sos_id: int,
eos_id: int,
) -> torch.Tensor:
"""
Args:
memory:
It's the output of the encoder with shape (T, N, C)
memory_key_padding_mask:
The padding mask from the encoder.
token_ids:
A list-of-list IDs. Each sublist contains IDs for an utterance.
The IDs can be either phone IDs or word piece IDs.
sos_id:
sos token id
eos_id:
eos token id
Returns:
A scalar, the **sum** of label smoothing loss over utterances
in the batch without any normalization.
"""
ys_in = add_sos(token_ids, sos_id=sos_id)
ys_in = [torch.tensor(y) for y in ys_in]
ys_in_pad = pad_sequence(
ys_in, batch_first=True, padding_value=float(eos_id)
)
ys_out = add_eos(token_ids, eos_id=eos_id)
ys_out = [torch.tensor(y) for y in ys_out]
ys_out_pad = pad_sequence(
ys_out, batch_first=True, padding_value=float(-1)
)
device = memory.device
ys_in_pad = ys_in_pad.to(device)
ys_out_pad = ys_out_pad.to(device)
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
device
)
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
# TODO: Use length information to create the decoder padding mask
# We set the first column to False since the first column in ys_in_pad
# contains sos_id, which is the same as eos_id in our current setting.
tgt_key_padding_mask[:, 0] = False
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
tgt = self.decoder_pos(tgt)
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
pred_pad = self.decoder(
tgt=tgt,
memory=memory,
tgt_mask=tgt_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
) # (T, N, C)
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
return decoder_loss
@torch.jit.export
def decoder_nll(
self,
memory: torch.Tensor,
memory_key_padding_mask: torch.Tensor,
token_ids: List[torch.Tensor],
sos_id: int,
eos_id: int,
) -> torch.Tensor:
"""
Args:
memory:
It's the output of the encoder with shape (T, N, C)
memory_key_padding_mask:
The padding mask from the encoder.
token_ids:
A list-of-list IDs (e.g., word piece IDs).
Each sublist represents an utterance.
sos_id:
The token ID for SOS.
eos_id:
The token ID for EOS.
Returns:
A 2-D tensor of shape (len(token_ids), max_token_length)
representing the cross entropy loss (i.e., negative log-likelihood).
"""
# The common part between this function and decoder_forward could be
# extracted as a separate function.
if isinstance(token_ids[0], torch.Tensor):
# This branch is executed by torchscript in C++.
# See https://github.com/k2-fsa/k2/pull/870
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
token_ids = [tolist(t) for t in token_ids]
ys_in = add_sos(token_ids, sos_id=sos_id)
ys_in = [torch.tensor(y) for y in ys_in]
ys_in_pad = pad_sequence(
ys_in, batch_first=True, padding_value=float(eos_id)
)
ys_out = add_eos(token_ids, eos_id=eos_id)
ys_out = [torch.tensor(y) for y in ys_out]
ys_out_pad = pad_sequence(
ys_out, batch_first=True, padding_value=float(-1)
)
device = memory.device
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
device
)
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
# TODO: Use length information to create the decoder padding mask
# We set the first column to False since the first column in ys_in_pad
# contains sos_id, which is the same as eos_id in our current setting.
tgt_key_padding_mask[:, 0] = False
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
tgt = self.decoder_pos(tgt)
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
pred_pad = self.decoder(
tgt=tgt,
memory=memory,
tgt_mask=tgt_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
) # (T, B, F)
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
# nll: negative log-likelihood
nll = torch.nn.functional.cross_entropy(
pred_pad.view(-1, self.decoder_num_class),
ys_out_pad.view(-1),
ignore_index=-1,
reduction="none",
)
nll = nll.view(pred_pad.shape[0], -1)
return nll
return logits, lengths
class TransformerEncoderLayer(nn.Module):
@ -494,138 +255,6 @@ class TransformerEncoderLayer(nn.Module):
return src
class TransformerDecoderLayer(nn.Module):
"""
Modified from torch.nn.TransformerDecoderLayer.
Add support of normalize_before,
i.e., use layer_norm before the first block.
Args:
d_model:
the number of expected features in the input (required).
nhead:
the number of heads in the multiheadattention models (required).
dim_feedforward:
the dimension of the feedforward network model (default=2048).
dropout:
the dropout value (default=0.1).
activation:
the activation function of intermediate layer, relu or
gelu (default=relu).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = decoder_layer(tgt, memory)
"""
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: str = "relu",
normalize_before: bool = True,
) -> None:
super(TransformerDecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def __setstate__(self, state):
if "activation" not in state:
state["activation"] = nn.functional.relu
super(TransformerDecoderLayer, self).__setstate__(state)
def forward(
self,
tgt: torch.Tensor,
memory: torch.Tensor,
tgt_mask: Optional[torch.Tensor] = None,
memory_mask: Optional[torch.Tensor] = None,
tgt_key_padding_mask: Optional[torch.Tensor] = None,
memory_key_padding_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt:
the sequence to the decoder layer (required).
memory:
the sequence from the last layer of the encoder (required).
tgt_mask:
the mask for the tgt sequence (optional).
memory_mask:
the mask for the memory sequence (optional).
tgt_key_padding_mask:
the mask for the tgt keys per batch (optional).
memory_key_padding_mask:
the mask for the memory keys per batch (optional).
Shape:
tgt: (T, N, E).
memory: (S, N, E).
tgt_mask: (T, T).
memory_mask: (T, S).
tgt_key_padding_mask: (N, T).
memory_key_padding_mask: (N, S).
S is the source sequence length, T is the target sequence length,
N is the batch size, E is the feature number
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt2 = self.self_attn(
tgt,
tgt,
tgt,
attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask,
)[0]
tgt = residual + self.dropout1(tgt2)
if not self.normalize_before:
tgt = self.norm1(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm2(tgt)
tgt2 = self.src_attn(
tgt,
memory,
memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)[0]
tgt = residual + self.dropout2(tgt2)
if not self.normalize_before:
tgt = self.norm2(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = residual + self.dropout3(tgt2)
if not self.normalize_before:
tgt = self.norm3(tgt)
return tgt
def _get_activation_fn(activation: str):
if activation == "relu":
return nn.functional.relu
@ -798,149 +427,3 @@ class Noam(object):
self.optimizer.load_state_dict(state_dict["optimizer"])
else:
setattr(self, key, value)
def encoder_padding_mask(
max_len: int, supervisions: Optional[Supervisions] = None
) -> Optional[torch.Tensor]:
"""Make mask tensor containing indexes of padded part.
TODO::
This function **assumes** that the model uses
a subsampling factor of 4. We should remove that
assumption later.
Args:
max_len:
Maximum length of input features.
CAUTION: It is the length after subsampling.
supervisions:
Supervision in lhotse format.
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
(CAUTION: It contains length information, i.e., start and number of
frames, before subsampling)
Returns:
Tensor: Mask tensor of dimension (batch_size, input_length),
True denote the masked indices.
"""
if supervisions is None:
return None
supervision_segments = torch.stack(
(
supervisions["sequence_idx"],
supervisions["start_frame"],
supervisions["num_frames"],
),
1,
).to(torch.int32)
lengths = [
0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
]
for idx in range(supervision_segments.size(0)):
# Note: TorchScript doesn't allow to unpack tensors as tuples
sequence_idx = supervision_segments[idx, 0].item()
start_frame = supervision_segments[idx, 1].item()
num_frames = supervision_segments[idx, 2].item()
lengths[sequence_idx] = start_frame + num_frames
lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
bs = int(len(lengths))
seq_range = torch.arange(0, max_len, dtype=torch.int64)
seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
# Note: TorchScript doesn't implement Tensor.new()
seq_length_expand = torch.tensor(
lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
).unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
return mask
def decoder_padding_mask(
ys_pad: torch.Tensor, ignore_id: int = -1
) -> torch.Tensor:
"""Generate a length mask for input.
The masked position are filled with True,
Unmasked positions are filled with False.
Args:
ys_pad:
padded tensor of dimension (batch_size, input_length).
ignore_id:
the ignored number (the padding number) in ys_pad
Returns:
Tensor:
a bool tensor of the same shape as the input tensor.
"""
ys_mask = ys_pad == ignore_id
return ys_mask
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
"""Generate a square mask for the sequence. The masked positions are
filled with float('-inf'). Unmasked positions are filled with float(0.0).
The mask can be used for masked self-attention.
For instance, if sz is 3, it returns::
tensor([[0., -inf, -inf],
[0., 0., -inf],
[0., 0., 0]])
Args:
sz: mask size
Returns:
A square mask of dimension (sz, sz)
"""
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = (
mask.float()
.masked_fill(mask == 0, float("-inf"))
.masked_fill(mask == 1, float(0.0))
)
return mask
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
"""Prepend sos_id to each utterance.
Args:
token_ids:
A list-of-list of token IDs. Each sublist contains
token IDs (e.g., word piece IDs) of an utterance.
sos_id:
The ID of the SOS token.
Return:
Return a new list-of-list, where each sublist starts
with SOS ID.
"""
return [[sos_id] + utt for utt in token_ids]
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
"""Append eos_id to each utterance.
Args:
token_ids:
A list-of-list of token IDs. Each sublist contains
token IDs (e.g., word piece IDs) of an utterance.
eos_id:
The ID of the EOS token.
Return:
Return a new list-of-list, where each sublist ends
with EOS ID.
"""
return [utt + [eos_id] for utt in token_ids]
def tolist(t: torch.Tensor) -> List[int]:
"""Used by jit"""
return torch.jit.annotate(List[int], t.tolist())