add onnx_check script for all-in-one onnx model
This commit is contained in:
parent
183821e6a0
commit
f3a546e04f
265
egs/librispeech/ASR/pruned_transducer_stateless3/onnx_check_all_in_one.py
Executable file
265
egs/librispeech/ASR/pruned_transducer_stateless3/onnx_check_all_in_one.py
Executable file
@ -0,0 +1,265 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script checks that exported onnx models produce the same output
|
||||
with the given torchscript model for the same input.
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
|
||||
import onnx
|
||||
import onnxruntime
|
||||
import onnx_graphsurgeon as gs
|
||||
|
||||
ort.set_default_logger_severity(3)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the torchscript model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx-encoder-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx encoder model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx-decoder-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx decoder model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx-joiner-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx joiner model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx-all-in-one-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx all in one model",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def test_encoder(
|
||||
model: torch.jit.ScriptModule,
|
||||
encoder_session: ort.InferenceSession,
|
||||
):
|
||||
encoder_inputs = encoder_session.get_inputs()
|
||||
assert encoder_inputs[0].name == "encoder/x"
|
||||
assert encoder_inputs[1].name == "encoder/x_lens"
|
||||
assert encoder_inputs[0].shape == ["N", "T", 80]
|
||||
assert encoder_inputs[1].shape == ["N"]
|
||||
|
||||
for N in [1, 5]:
|
||||
for T in [12, 25]:
|
||||
print("N, T", N, T)
|
||||
x = torch.rand(N, T, 80, dtype=torch.float32)
|
||||
x_lens = torch.randint(low=10, high=T + 1, size=(N,))
|
||||
x_lens[0] = T
|
||||
|
||||
encoder_inputs = {
|
||||
"encoder/x": x.numpy(),
|
||||
"encoder/x_lens": x_lens.numpy(),
|
||||
}
|
||||
encoder_out, encoder_out_lens = encoder_session.run(
|
||||
["encoder/encoder_out", "encoder/encoder_out_lens"],
|
||||
encoder_inputs,
|
||||
)
|
||||
|
||||
torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens)
|
||||
|
||||
encoder_out = torch.from_numpy(encoder_out)
|
||||
assert torch.allclose(encoder_out, torch_encoder_out, atol=1e-05), (
|
||||
(encoder_out - torch_encoder_out).abs().max()
|
||||
)
|
||||
|
||||
|
||||
def test_decoder(
|
||||
model: torch.jit.ScriptModule,
|
||||
decoder_session: ort.InferenceSession,
|
||||
):
|
||||
decoder_inputs = decoder_session.get_inputs()
|
||||
assert decoder_inputs[0].name == "decoder/y"
|
||||
assert decoder_inputs[0].shape == ["N", 2]
|
||||
for N in [1, 5, 10]:
|
||||
y = torch.randint(low=1, high=500, size=(10, 2))
|
||||
|
||||
decoder_inputs = {"decoder/y": y.numpy()}
|
||||
decoder_out = decoder_session.run(
|
||||
["decoder/decoder_out"],
|
||||
decoder_inputs,
|
||||
)[0]
|
||||
decoder_out = torch.from_numpy(decoder_out)
|
||||
|
||||
torch_decoder_out = model.decoder(y, need_pad=False)
|
||||
assert torch.allclose(decoder_out, torch_decoder_out, atol=1e-5), (
|
||||
(decoder_out - torch_decoder_out).abs().max()
|
||||
)
|
||||
|
||||
|
||||
def test_joiner(
|
||||
model: torch.jit.ScriptModule,
|
||||
joiner_session: ort.InferenceSession,
|
||||
):
|
||||
joiner_inputs = joiner_session.get_inputs()
|
||||
assert joiner_inputs[0].name == "joiner/encoder_out"
|
||||
assert joiner_inputs[0].shape == ["N", 512]
|
||||
|
||||
assert joiner_inputs[1].name == "joiner/decoder_out"
|
||||
assert joiner_inputs[1].shape == ["N", 512]
|
||||
|
||||
for N in [1, 5, 10]:
|
||||
encoder_out = torch.rand(N, 512)
|
||||
decoder_out = torch.rand(N, 512)
|
||||
|
||||
joiner_inputs = {
|
||||
"joiner/encoder_out": encoder_out.numpy(),
|
||||
"joiner/decoder_out": decoder_out.numpy(),
|
||||
}
|
||||
joiner_out = joiner_session.run(["joiner/logit"], joiner_inputs)[0]
|
||||
joiner_out = torch.from_numpy(joiner_out)
|
||||
|
||||
torch_joiner_out = model.joiner(
|
||||
encoder_out,
|
||||
decoder_out,
|
||||
project_input=True,
|
||||
)
|
||||
assert torch.allclose(joiner_out, torch_joiner_out, atol=1e-5), (
|
||||
(joiner_out - torch_joiner_out).abs().max()
|
||||
)
|
||||
|
||||
|
||||
def extract_sub_model(onnx_graph: onnx.ModelProto, input_op_names: list, output_op_names: list, non_verbose=False):
|
||||
onnx_graph = onnx.shape_inference.infer_shapes(onnx_graph)
|
||||
graph = gs.import_onnx(onnx_graph)
|
||||
graph.cleanup().toposort()
|
||||
|
||||
# Extraction of input OP and output OP
|
||||
graph_node_inputs = [graph_nodes for graph_nodes in graph.nodes for graph_nodes_input in graph_nodes.inputs if graph_nodes_input.name in input_op_names]
|
||||
graph_node_outputs = [graph_nodes for graph_nodes in graph.nodes for graph_nodes_output in graph_nodes.outputs if graph_nodes_output.name in output_op_names]
|
||||
|
||||
# Init graph INPUT/OUTPUT
|
||||
graph.inputs.clear()
|
||||
graph.outputs.clear()
|
||||
|
||||
# Update graph INPUT/OUTPUT
|
||||
graph.inputs = [graph_node_input for graph_node in graph_node_inputs for graph_node_input in graph_node.inputs if graph_node_input.shape]
|
||||
graph.outputs = [graph_node_output for graph_node in graph_node_outputs for graph_node_output in graph_node.outputs]
|
||||
|
||||
# Cleanup
|
||||
graph.cleanup().toposort()
|
||||
|
||||
# Shape Estimation
|
||||
extracted_graph = None
|
||||
try:
|
||||
extracted_graph = onnx.shape_inference.infer_shapes(gs.export_onnx(graph))
|
||||
except Exception as e:
|
||||
extracted_graph = gs.export_onnx(graph)
|
||||
if not non_verbose:
|
||||
print(
|
||||
f'WARNING: ' +
|
||||
'The input shape of the next OP does not match the output shape. ' +
|
||||
'Be sure to open the .onnx file to verify the certainty of the geometry.'
|
||||
)
|
||||
return extracted_graph
|
||||
|
||||
|
||||
def extract_encoder(onnx_model: onnx.ModelProto):
|
||||
encoder_ = extract_sub_model(onnx_model, ["encoder/x", "encoder/x_lens"], ["encoder/encoder_out", "encoder/encoder_out_lens"], False)
|
||||
onnx.save(encoder_, "tmp_encoder.onnx")
|
||||
onnx.checker.check_model(encoder_)
|
||||
sess = onnxruntime.InferenceSession("tmp_encoder.onnx")
|
||||
os.remove("tmp_encoder.onnx")
|
||||
return sess
|
||||
|
||||
|
||||
def extract_decoder(onnx_model: onnx.ModelProto):
|
||||
decoder_ = extract_sub_model(onnx_model, ["decoder/y"], ["decoder/decoder_out"], False)
|
||||
onnx.save(decoder_, "tmp_decoder.onnx")
|
||||
onnx.checker.check_model(decoder_)
|
||||
sess = onnxruntime.InferenceSession("tmp_decoder.onnx")
|
||||
os.remove("tmp_decoder.onnx")
|
||||
return sess
|
||||
|
||||
|
||||
def extract_joiner(onnx_model: onnx.ModelProto):
|
||||
joiner_ = extract_sub_model(onnx_model, ["joiner/encoder_out", "joiner/decoder_out"], ["joiner/logit"], False)
|
||||
onnx.save(joiner_, "tmp_joiner.onnx")
|
||||
onnx.checker.check_model(joiner_)
|
||||
sess = onnxruntime.InferenceSession("tmp_joiner.onnx")
|
||||
os.remove("tmp_joiner.onnx")
|
||||
return sess
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
model = torch.jit.load(args.jit_filename)
|
||||
onnx_model = onnx.load(args.onnx_all_in_one_filename)
|
||||
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
logging.info("Test encoder")
|
||||
encoder_session = extract_encoder(onnx_model)
|
||||
test_encoder(model, encoder_session)
|
||||
|
||||
logging.info("Test decoder")
|
||||
decoder_session = extract_decoder(onnx_model)
|
||||
test_decoder(model, decoder_session)
|
||||
|
||||
logging.info("Test joiner")
|
||||
joiner_session = extract_joiner(onnx_model)
|
||||
test_joiner(model, joiner_session)
|
||||
logging.info("Finished checking ONNX models")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220727)
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user