mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
update aishell recipe with master branch and fix some bugs
This commit is contained in:
parent
99ef352296
commit
f344b07e7c
@ -15,5 +15,3 @@ We may add recipes for other tasks as well in the future.
|
||||
yesno
|
||||
|
||||
librispeech
|
||||
|
||||
aishell
|
||||
|
@ -1,22 +1,22 @@
|
||||
## Results
|
||||
|
||||
### Aishell training results (Conformer-CTC)
|
||||
#### 2021-09-13
|
||||
### AIShell training results (Conformer-CTC)
|
||||
#### 2021-11-17
|
||||
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/30
|
||||
(Pinfeng Luo): Result of https://github.com/k2-fsa/icefall/pull/30
|
||||
|
||||
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc
|
||||
Pretrained model is available at https://huggingface.co/pfluo/icefall_aishell_model
|
||||
The tensorboard log for training is available at https://tensorboard.dev/experiment/zsw6Hn6EQlG8I7HqEkiQpw
|
||||
|
||||
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 23 to 40, and using `attention-decoder` decoder with num_paths equals to 100.
|
||||
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 30 to 49, and using `attention-decoder` decoder with num_paths equals to 100.
|
||||
|
||||
||test|
|
||||
|--|--|
|
||||
|CER| 4.74% |
|
||||
|
||||
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the CER above are also listed below.
|
||||
|CER| 4.38% |
|
||||
|
||||
||lm_scale|attention_scale|
|
||||
|--|--|--|
|
||||
|test|0.3|0.9|
|
||||
|test|0.6|1.2|
|
||||
|
||||
You can use the following commands to reproduce our results:
|
||||
|
||||
@ -27,30 +27,16 @@ cd icefall
|
||||
cd egs/aishell/ASR
|
||||
./prepare.sh
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1"
|
||||
python conformer_ctc/train.py --bucketing-sampler False \
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
python3 conformer_ctc/train.py --bucketing-sampler False \
|
||||
--concatenate-cuts False \
|
||||
--max-duration 200 \
|
||||
--world-size 2
|
||||
--world-size 8
|
||||
|
||||
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
||||
--epoch 40 \
|
||||
--avg 18 \
|
||||
python3 conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
||||
--epoch 49 \
|
||||
--avg 20 \
|
||||
--method attention-decoder \
|
||||
--max-duration 50 \
|
||||
--num-paths 100
|
||||
```
|
||||
|
||||
### Aishell training results (Tdnn-Lstm)
|
||||
#### 2021-09-13
|
||||
|
||||
(Wei Kang): Result of phone based Tdnn-Lstm model, https://github.com/k2-fsa/icefall/pull/30
|
||||
|
||||
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc_lstm_ctc
|
||||
|
||||
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 19 to 8, and using `1best` decoding method.
|
||||
|
||||
||test|
|
||||
|--|--|
|
||||
|CER| 10.16% |
|
||||
|
||||
|
@ -1 +0,0 @@
|
||||
../tdnn_lstm_ctc/asr_datamodule.py
|
335
egs/aishell/ASR/conformer_ctc/asr_datamodule.py
Normal file
335
egs/aishell/ASR/conformer_ctc/asr_datamodule.py
Normal file
@ -0,0 +1,335 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.dataset.datamodule import DataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class AishellAsrDataModule(DataModule):
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = self.train_cuts()
|
||||
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = [
|
||||
SpecAugment(
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
]
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = self.valid_cuts()
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = SingleCutSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
cuts = self.test_cuts()
|
||||
is_list = isinstance(cuts, list)
|
||||
test_loaders = []
|
||||
if not is_list:
|
||||
cuts = [cuts]
|
||||
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
)
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = SingleCutSampler(
|
||||
cuts_test, max_duration=self.args.max_duration
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test, batch_size=None, sampler=sampler, num_workers=1
|
||||
)
|
||||
test_loaders.append(test_dl)
|
||||
|
||||
if is_list:
|
||||
return test_loaders
|
||||
else:
|
||||
return test_loaders[0]
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train.json.gz"
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(
|
||||
self.args.feature_dir / "cuts_dev.json.gz"
|
||||
)
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
test_sets = ["test"]
|
||||
cuts = []
|
||||
for test_set in test_sets:
|
||||
logging.debug("About to get test cuts")
|
||||
cuts.append(
|
||||
load_manifest(
|
||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts
|
@ -40,7 +40,6 @@ class Conformer(Transformer):
|
||||
cnn_module_kernel (int): Kernel size of convolution module
|
||||
normalize_before (bool): whether to use layer_norm before the first block.
|
||||
vgg_frontend (bool): whether to use vgg frontend.
|
||||
use_feat_batchnorm(bool): whether to use batch-normalize the input.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -99,7 +98,7 @@ class Conformer(Transformer):
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The model input. Its shape is [N, T, C].
|
||||
The model input. Its shape is (N, T, C).
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
@ -453,7 +452,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||
@ -683,7 +681,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
|
@ -1,7 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||
# Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||
# Copyright 2021 (Author: Pingfeng Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -25,6 +24,7 @@ from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
@ -38,10 +38,13 @@ from icefall.decode import (
|
||||
nbest_oracle,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_env_info,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
@ -77,13 +80,22 @@ def get_parser():
|
||||
default="attention-decoder",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||
It needs neither a lexicon nor an n-gram LM.
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
- (3) attention-decoder. Extract n paths from the lattice,
|
||||
the path with the highest score is the decoding result.
|
||||
- (4) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||
is the decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||
lattice, the path with the highest score is the decoding result.
|
||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
@ -95,18 +107,18 @@ def get_parser():
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, attention-decoder, and nbest-oracle
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lattice-score-scale",
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, attention-decoder, and nbest-oracle
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
@ -122,17 +134,39 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The LM dir.
|
||||
It should contain either G_3_gram.pt or G_3_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_char"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"feature_dim": 80,
|
||||
"nhead": 4,
|
||||
"attention_dim": 512,
|
||||
@ -146,6 +180,7 @@ def get_params() -> AttributeDict:
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
@ -154,21 +189,23 @@ def get_params() -> AttributeDict:
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if decoding method is 1best, the key is the string `no_rescore`.
|
||||
If attention rescoring is used, the key is the string
|
||||
`ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the
|
||||
value of `lm_scale` and `attention_scale`. An example key is
|
||||
`ngram_lm_scale_0.7_attention_scale_0.5`
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
@ -178,12 +215,18 @@ def decode_one_batch(
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "attention-decoder", it uses attention rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
@ -194,20 +237,27 @@ def decode_one_batch(
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
The token ID of the EOS.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
if HLG is not None:
|
||||
device = HLG.device
|
||||
else:
|
||||
device = H.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is [N, T, C]
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
@ -218,9 +268,17 @@ def decode_one_batch(
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
if H is None:
|
||||
assert HLG is not None
|
||||
decoding_graph = HLG
|
||||
else:
|
||||
assert HLG is None
|
||||
assert bpe_model is not None
|
||||
decoding_graph = H
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
decoding_graph=decoding_graph,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
@ -229,18 +287,41 @@ def decode_one_batch(
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
token_ids = get_texts(best_path)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "ctc-decoding"
|
||||
return {key: hyps}
|
||||
|
||||
if params.method == "nbest-oracle":
|
||||
# Note: You can also pass rescored lattices to it.
|
||||
# We choose the HLG decoded lattice for speed reasons
|
||||
# as HLG decoding is faster and the oracle WER
|
||||
# is slightly worse than that of rescored lattices.
|
||||
return nbest_oracle(
|
||||
# is only slightly worse than that of rescored lattices.
|
||||
best_path = nbest_oracle(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
word_table=word_table,
|
||||
scale=params.lattice_score_scale,
|
||||
nbest_scale=params.nbest_scale,
|
||||
oov="<UNK>",
|
||||
)
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||
return {key: hyps}
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
@ -253,31 +334,70 @@ def decode_one_batch(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
scale=params.lattice_score_scale,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method == "attention-decoder"
|
||||
assert params.method in [
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
elif params.method == "attention-decoder":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
# TODO: pass `lattice` instead of `rescored_lattice` to
|
||||
# `rescore_with_attention_decoder`
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.method}"
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
scale=params.lattice_score_scale,
|
||||
)
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
if best_path_dict is not None:
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
else:
|
||||
for lm_scale in lm_scale_list:
|
||||
ans[f"{lm_scale}"] = [[] * lattice.shape[0]]
|
||||
return ans
|
||||
|
||||
|
||||
@ -285,11 +405,14 @@ def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
@ -300,18 +423,26 @@ def decode_dataset(
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if the decoding method is
|
||||
1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention
|
||||
rescoring is used. Its value is a list of tuples. Each tuple contains two
|
||||
elements: The first is the reference transcript, and the second is the
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
@ -331,14 +462,18 @@ def decode_dataset(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
@ -411,6 +546,9 @@ def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.lm_dir = Path(args.lm_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
@ -438,14 +576,70 @@ def main():
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||
)
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
if params.method == "ctc-decoding":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
else:
|
||||
H = None
|
||||
bpe_model = None
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||
)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in (
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
):
|
||||
if not (params.lm_dir / "G_3_gram.pt").is_file():
|
||||
logging.info("Loading G_3_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_3_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
# Save a dummy value so that it can be loaded in C++.
|
||||
# See https://github.com/pytorch/pytorch/issues/67902
|
||||
# for why we need to do this.
|
||||
G["dummy"] = 1
|
||||
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_3_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_3_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_3_gram.pt", map_location=device)
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
@ -468,7 +662,8 @@ def main():
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
@ -496,7 +691,10 @@ def main():
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
@ -24,6 +24,7 @@ from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torchaudio
|
||||
from conformer import Conformer
|
||||
@ -33,8 +34,9 @@ from icefall.decode import (
|
||||
get_lattice,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
from icefall.utils import AttributeDict, get_env_info, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -54,12 +56,25 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
help="""Path to words.txt.
|
||||
Used only when method is not ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||
"--HLG",
|
||||
type=str,
|
||||
help="""Path to HLG.pt.
|
||||
Used only when method is not ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -68,10 +83,18 @@ def get_parser():
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Possible values are:
|
||||
(0) ctc-decoding - Use CTC decoding. It uses a sentence
|
||||
piece model, i.e., lang_dir/bpe.model, to convert
|
||||
word pieces to words. It needs neither a lexicon
|
||||
nor an n-gram LM.
|
||||
(1) 1best - Use the best path as decoding output. Only
|
||||
the transformer encoder output is used for decoding.
|
||||
We call it HLG decoding.
|
||||
(2) attention-decoder - Extract n paths from the rescored
|
||||
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||
decoding lattice and then use 1best to decode the
|
||||
rescored lattice.
|
||||
We call it HLG decoding + n-gram LM rescoring.
|
||||
(3) attention-decoder - Extract n paths from the rescored
|
||||
lattice and use the transformer attention decoder for
|
||||
rescoring.
|
||||
We call it HLG decoding + n-gram LM rescoring + attention
|
||||
@ -79,6 +102,16 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--G",
|
||||
type=str,
|
||||
help="""An LM for rescoring.
|
||||
Used only when method is
|
||||
whole-lattice-rescoring or attention-decoder.
|
||||
It's usually a 4-gram LM.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
@ -93,7 +126,7 @@ def get_parser():
|
||||
type=float,
|
||||
default=0.3,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
Used only when method is whole-lattice-rescoring and attention-decoder.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
@ -111,7 +144,7 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lattice-score-scale",
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""
|
||||
@ -125,7 +158,7 @@ def get_parser():
|
||||
|
||||
parser.add_argument(
|
||||
"--sos-id",
|
||||
type=float,
|
||||
type=int,
|
||||
default=1,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
@ -133,9 +166,18 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-classes",
|
||||
type=int,
|
||||
default=500,
|
||||
help="""
|
||||
Vocab size in the BPE model.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--eos-id",
|
||||
type=float,
|
||||
type=int,
|
||||
default=1,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
@ -163,13 +205,13 @@ def get_params() -> AttributeDict:
|
||||
"num_classes": 4336,
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"feature_dim": 80,
|
||||
"nhead": 4,
|
||||
"attention_dim": 512,
|
||||
"num_decoder_layers": 6,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# parameters for deocding
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
@ -209,7 +251,13 @@ def main():
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
if args.method != "attention-decoder":
|
||||
# to save memory as the attention decoder
|
||||
# will not be used
|
||||
params.num_decoder_layers = 0
|
||||
|
||||
params.update(vars(args))
|
||||
params["env_info"] = get_env_info()
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
@ -231,17 +279,10 @@ def main():
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
@ -275,41 +316,108 @@ def main():
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
if params.method == "ctc-decoding":
|
||||
logging.info("Use CTC decoding")
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(params.bpe_model)
|
||||
max_token_id = params.num_classes - 1
|
||||
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=H,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "1best":
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
elif params.method == "attention-decoder":
|
||||
logging.info("Use HLG + attention decoder rescoring")
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
scale=params.lattice_score_scale,
|
||||
ngram_lm_scale=params.ngram_lm_scale,
|
||||
attention_scale=params.attention_decoder_scale,
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
token_ids = get_texts(best_path)
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
hyps = [s.split() for s in hyps]
|
||||
elif params.method in [
|
||||
"1best",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading G from {params.G}")
|
||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = G.to(device)
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G.lm_scores = G.scores.clone()
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "1best":
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
logging.info("Use HLG decoding + LM rescoring")
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=[params.ngram_lm_scale],
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
elif params.method == "attention-decoder":
|
||||
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||
)
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
ngram_lm_scale=params.ngram_lm_scale,
|
||||
attention_scale=params.attention_decoder_scale,
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
|
@ -22,8 +22,8 @@ import torch.nn as nn
|
||||
class Conv2dSubsampling(nn.Module):
|
||||
"""Convolutional 2D subsampling (to 1/4 length).
|
||||
|
||||
Convert an input of shape [N, T, idim] to an output
|
||||
with shape [N, T', odim], where
|
||||
Convert an input of shape (N, T, idim) to an output
|
||||
with shape (N, T', odim), where
|
||||
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||
|
||||
It is based on
|
||||
@ -34,10 +34,10 @@ class Conv2dSubsampling(nn.Module):
|
||||
"""
|
||||
Args:
|
||||
idim:
|
||||
Input dim. The input shape is [N, T, idim].
|
||||
Input dim. The input shape is (N, T, idim).
|
||||
Caution: It requires: T >=7, idim >=7
|
||||
odim:
|
||||
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
assert idim >= 7
|
||||
super().__init__()
|
||||
@ -58,18 +58,18 @@ class Conv2dSubsampling(nn.Module):
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is [N, T, idim].
|
||||
Its shape is (N, T, idim).
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
# On entry, x is [N, T, idim]
|
||||
x = x.unsqueeze(1) # [N, T, idim] -> [N, 1, T, idim] i.e., [N, C, H, W]
|
||||
# On entry, x is (N, T, idim)
|
||||
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
||||
x = self.conv(x)
|
||||
# Now x is of shape [N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2]
|
||||
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
# Now x is of shape [N, ((T-1)//2 - 1))//2, odim]
|
||||
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
||||
return x
|
||||
|
||||
|
||||
@ -80,8 +80,8 @@ class VggSubsampling(nn.Module):
|
||||
This paper is not 100% explicit so I am guessing to some extent,
|
||||
and trying to compare with other VGG implementations.
|
||||
|
||||
Convert an input of shape [N, T, idim] to an output
|
||||
with shape [N, T', odim], where
|
||||
Convert an input of shape (N, T, idim) to an output
|
||||
with shape (N, T', odim), where
|
||||
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||
"""
|
||||
|
||||
@ -93,10 +93,10 @@ class VggSubsampling(nn.Module):
|
||||
|
||||
Args:
|
||||
idim:
|
||||
Input dim. The input shape is [N, T, idim].
|
||||
Input dim. The input shape is (N, T, idim).
|
||||
Caution: It requires: T >=7, idim >=7
|
||||
odim:
|
||||
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
@ -149,10 +149,10 @@ class VggSubsampling(nn.Module):
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is [N, T, idim].
|
||||
Its shape is (N, T, idim).
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
x = x.unsqueeze(1)
|
||||
x = self.layers(x)
|
||||
|
@ -1,49 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from subsampling import Conv2dSubsampling
|
||||
from subsampling import VggSubsampling
|
||||
import torch
|
||||
|
||||
|
||||
def test_conv2d_subsampling():
|
||||
N = 3
|
||||
odim = 2
|
||||
|
||||
for T in range(7, 19):
|
||||
for idim in range(7, 20):
|
||||
model = Conv2dSubsampling(idim=idim, odim=odim)
|
||||
x = torch.empty(N, T, idim)
|
||||
y = model(x)
|
||||
assert y.shape[0] == N
|
||||
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||
assert y.shape[2] == odim
|
||||
|
||||
|
||||
def test_vgg_subsampling():
|
||||
N = 3
|
||||
odim = 2
|
||||
|
||||
for T in range(7, 19):
|
||||
for idim in range(7, 20):
|
||||
model = VggSubsampling(idim=idim, odim=odim)
|
||||
x = torch.empty(N, T, idim)
|
||||
y = model(x)
|
||||
assert y.shape[0] == N
|
||||
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||
assert y.shape[2] == odim
|
@ -1,105 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
from transformer import (
|
||||
Transformer,
|
||||
encoder_padding_mask,
|
||||
generate_square_subsequent_mask,
|
||||
decoder_padding_mask,
|
||||
add_sos,
|
||||
add_eos,
|
||||
)
|
||||
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def test_encoder_padding_mask():
|
||||
supervisions = {
|
||||
"sequence_idx": torch.tensor([0, 1, 2]),
|
||||
"start_frame": torch.tensor([0, 0, 0]),
|
||||
"num_frames": torch.tensor([18, 7, 13]),
|
||||
}
|
||||
|
||||
max_len = ((18 - 1) // 2 - 1) // 2
|
||||
mask = encoder_padding_mask(max_len, supervisions)
|
||||
expected_mask = torch.tensor(
|
||||
[
|
||||
[False, False, False], # ((18 - 1)//2 - 1)//2 = 3,
|
||||
[False, True, True], # ((7 - 1)//2 - 1)//2 = 1,
|
||||
[False, False, True], # ((13 - 1)//2 - 1)//2 = 2,
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected_mask))
|
||||
|
||||
|
||||
def test_transformer():
|
||||
num_features = 40
|
||||
num_classes = 87
|
||||
model = Transformer(num_features=num_features, num_classes=num_classes)
|
||||
|
||||
N = 31
|
||||
|
||||
for T in range(7, 30):
|
||||
x = torch.rand(N, T, num_features)
|
||||
y, _, _ = model(x)
|
||||
assert y.shape == (N, (((T - 1) // 2) - 1) // 2, num_classes)
|
||||
|
||||
|
||||
def test_generate_square_subsequent_mask():
|
||||
s = 5
|
||||
mask = generate_square_subsequent_mask(s)
|
||||
inf = float("inf")
|
||||
expected_mask = torch.tensor(
|
||||
[
|
||||
[0.0, -inf, -inf, -inf, -inf],
|
||||
[0.0, 0.0, -inf, -inf, -inf],
|
||||
[0.0, 0.0, 0.0, -inf, -inf],
|
||||
[0.0, 0.0, 0.0, 0.0, -inf],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected_mask))
|
||||
|
||||
|
||||
def test_decoder_padding_mask():
|
||||
x = [torch.tensor([1, 2]), torch.tensor([3]), torch.tensor([2, 5, 8])]
|
||||
y = pad_sequence(x, batch_first=True, padding_value=-1)
|
||||
mask = decoder_padding_mask(y, ignore_id=-1)
|
||||
expected_mask = torch.tensor(
|
||||
[
|
||||
[False, False, True],
|
||||
[False, True, True],
|
||||
[False, False, False],
|
||||
]
|
||||
)
|
||||
assert torch.all(torch.eq(mask, expected_mask))
|
||||
|
||||
|
||||
def test_add_sos():
|
||||
x = [[1, 2], [3], [2, 5, 8]]
|
||||
y = add_sos(x, sos_id=0)
|
||||
expected_y = [[0, 1, 2], [0, 3], [0, 2, 5, 8]]
|
||||
assert y == expected_y
|
||||
|
||||
|
||||
def test_add_eos():
|
||||
x = [[1, 2], [3], [2, 5, 8]]
|
||||
y = add_eos(x, eos_id=0)
|
||||
expected_y = [[1, 2, 0], [3, 0], [2, 5, 8, 0]]
|
||||
assert y == expected_y
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Wei Kang)
|
||||
# Copyright 2021 (authors: Pinfeng Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -21,16 +22,16 @@ import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
@ -43,7 +44,9 @@ from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
encode_supervisions,
|
||||
get_env_info,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
@ -92,6 +95,35 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--att-rate",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="""The attention rate.
|
||||
The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -99,18 +131,16 @@ def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
@ -130,66 +160,60 @@ def get_params() -> AttributeDict:
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- use_feat_batchnorm: Whether to do batch normalization for the
|
||||
input features.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- head: Number of heads of multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
|
||||
- att_rate: The proportion of label smoothing loss, final loss will be
|
||||
(1 - att_rate) * ctc_loss + att_rate * label_smoothing_loss
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- attention_dim: Attention dimension.
|
||||
|
||||
- nhead: Number of heads in multi-head attention.
|
||||
Must satisfy attention_dim // nhead == 0.
|
||||
|
||||
- num_encoder_layers: Number of attention encoder layers.
|
||||
|
||||
- num_decoder_layers: Number of attention decoder layers.
|
||||
|
||||
- use_feat_batchnorm: Whether to do normalization in the input layer.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- lr_factor: The lr_factor for the optimizer.
|
||||
- lr_factor: The lr_factor for Noam optimizer.
|
||||
|
||||
- warm_step: The warm_step for the optimizer.
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_char"),
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 10,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 3000,
|
||||
# parameters for k2.ctc_loss
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
"att_rate": 0.7,
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"use_feat_batchnorm": True,
|
||||
"attention_dim": 512,
|
||||
"nhead": 4,
|
||||
"num_encoder_layers": 12,
|
||||
"num_decoder_layers": 6,
|
||||
"use_feat_batchnorm": True,
|
||||
# parameters for loss
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
"att_rate": 0.7,
|
||||
# parameters for Noam
|
||||
"weight_decay": 1e-5,
|
||||
"lr_factor": 5.0,
|
||||
"warm_step": 36000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
@ -289,7 +313,7 @@ def compute_loss(
|
||||
batch: dict,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
):
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
@ -312,14 +336,14 @@ def compute_loss(
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is [N, T, C]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
@ -348,36 +372,41 @@ def compute_loss(
|
||||
|
||||
if params.att_rate != 0.0:
|
||||
with torch.set_grad_enabled(is_training):
|
||||
if hasattr(model, "module"):
|
||||
att_loss = model.module.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
else:
|
||||
att_loss = model.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
mmodel = model.module if hasattr(model, "module") else model
|
||||
# Note: We need to generate an unsorted version of token_ids
|
||||
# `encode_supervisions()` called above sorts text, but
|
||||
# encoder_memory and memory_mask are not sorted, so we
|
||||
# use an unsorted version `supervisions["text"]` to regenerate
|
||||
# the token_ids
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/97
|
||||
# for more details
|
||||
unsorted_token_ids = graph_compiler.texts_to_ids(
|
||||
supervisions["text"]
|
||||
)
|
||||
att_loss = mmodel.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=unsorted_token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||
else:
|
||||
loss = ctc_loss
|
||||
att_loss = torch.tensor([0])
|
||||
|
||||
# train_frames and valid_frames are used for printing.
|
||||
if is_training:
|
||||
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||
else:
|
||||
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
return loss, ctc_loss.detach(), att_loss.detach()
|
||||
info = MetricsTracker()
|
||||
info["frames"] = supervision_segments[:, 2].sum().item()
|
||||
info["ctc_loss"] = ctc_loss.detach().cpu().item()
|
||||
if params.att_rate != 0.0:
|
||||
info["att_loss"] = att_loss.detach().cpu().item()
|
||||
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
@ -386,18 +415,14 @@ def compute_validation_loss(
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = 0.0
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
tot_frames = 0.0
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, ctc_loss, att_loss = compute_loss(
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
@ -405,36 +430,17 @@ def compute_validation_loss(
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
assert ctc_loss.requires_grad is False
|
||||
assert att_loss.requires_grad is False
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
tot_loss += loss_cpu
|
||||
|
||||
tot_ctc_loss += ctc_loss.detach().cpu().item()
|
||||
tot_att_loss += att_loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.valid_frames
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
s = torch.tensor(
|
||||
[tot_loss, tot_ctc_loss, tot_att_loss, tot_frames],
|
||||
device=loss.device,
|
||||
)
|
||||
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||
s = s.cpu().tolist()
|
||||
tot_loss = s[0]
|
||||
tot_ctc_loss = s[1]
|
||||
tot_att_loss = s[2]
|
||||
tot_frames = s[3]
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
params.valid_loss = tot_loss / tot_frames
|
||||
params.valid_ctc_loss = tot_ctc_loss / tot_frames
|
||||
params.valid_att_loss = tot_att_loss / tot_frames
|
||||
|
||||
if params.valid_loss < params.best_valid_loss:
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = params.valid_loss
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
@ -473,24 +479,21 @@ def train_one_epoch(
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
params.tot_loss = 0.0
|
||||
params.tot_frames = 0.0
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, ctc_loss, att_loss = compute_loss(
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
@ -500,75 +503,26 @@ def train_one_epoch(
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
ctc_loss_cpu = ctc_loss.detach().cpu().item()
|
||||
att_loss_cpu = att_loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.train_frames
|
||||
tot_loss += loss_cpu
|
||||
tot_ctc_loss += ctc_loss_cpu
|
||||
tot_att_loss += att_loss_cpu
|
||||
|
||||
params.tot_frames += params.train_frames
|
||||
params.tot_loss += loss_cpu
|
||||
|
||||
tot_avg_loss = tot_loss / tot_frames
|
||||
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
||||
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
f"batch avg ctc loss {ctc_loss_cpu/params.train_frames:.4f}, "
|
||||
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
||||
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||
f"total avg ctc loss: {tot_avg_ctc_loss:.4f}, "
|
||||
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||
f"batch size: {batch_size}"
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ctc_loss",
|
||||
ctc_loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/current_att_loss",
|
||||
att_loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/current_loss",
|
||||
loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_ctc_loss",
|
||||
tot_avg_ctc_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_att_loss",
|
||||
tot_avg_att_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_loss",
|
||||
tot_avg_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
@ -576,33 +530,14 @@ def train_one_epoch(
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"valid ctc loss {params.valid_ctc_loss:.4f},"
|
||||
f"valid att loss {params.valid_att_loss:.4f},"
|
||||
f"valid loss {params.valid_loss:.4f},"
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ctc_loss",
|
||||
params.valid_ctc_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_att_loss",
|
||||
params.valid_att_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_loss",
|
||||
params.valid_loss,
|
||||
params.batch_idx_train,
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
params.train_loss = params.tot_loss / params.tot_frames
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
@ -685,6 +620,14 @@ def run(rank, world_size, args):
|
||||
train_dl = aishell.train_dataloaders()
|
||||
valid_dl = aishell.valid_dataloaders()
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
@ -725,11 +668,51 @@ def run(rank, world_size, args):
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
|
@ -83,8 +83,8 @@ class Transformer(nn.Module):
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape [N, T, num_classes]
|
||||
# to the shape [N, T//subsampling_factor, d_model].
|
||||
# self.encoder_embed converts the input of shape (N, T, num_classes)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_classes -> d_model
|
||||
@ -162,7 +162,7 @@ class Transformer(nn.Module):
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The input tensor. Its shape is [N, T, C].
|
||||
The input tensor. Its shape is (N, T, C).
|
||||
supervision:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
@ -171,17 +171,17 @@ class Transformer(nn.Module):
|
||||
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- CTC output for ctc decoding. Its shape is [N, T, C]
|
||||
- Encoder output with shape [T, N, C]. It can be used as key and
|
||||
- CTC output for ctc decoding. Its shape is (N, T, C)
|
||||
- Encoder output with shape (T, N, C). It can be used as key and
|
||||
value for the decoder.
|
||||
- Encoder output padding mask. It can be used as
|
||||
memory_key_padding_mask for the decoder. Its shape is [N, T].
|
||||
memory_key_padding_mask for the decoder. Its shape is (N, T).
|
||||
It is None if `supervision` is None.
|
||||
"""
|
||||
if self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # [N, T, C] -> [N, C, T]
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # [N, C, T] -> [N, T, C]
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
||||
x, supervision
|
||||
)
|
||||
@ -195,7 +195,7 @@ class Transformer(nn.Module):
|
||||
|
||||
Args:
|
||||
x:
|
||||
The model input. Its shape is [N, T, C].
|
||||
The model input. Its shape is (N, T, C).
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
@ -206,8 +206,8 @@ class Transformer(nn.Module):
|
||||
padding mask for the decoder.
|
||||
Returns:
|
||||
Return a tuple with two tensors:
|
||||
- The encoder output, with shape [T, N, C]
|
||||
- encoder padding mask, with shape [N, T].
|
||||
- The encoder output, with shape (T, N, C)
|
||||
- encoder padding mask, with shape (N, T).
|
||||
The mask is None if `supervisions` is None.
|
||||
It is used as memory key padding mask in the decoder.
|
||||
"""
|
||||
@ -225,17 +225,18 @@ class Transformer(nn.Module):
|
||||
Args:
|
||||
x:
|
||||
The output tensor from the transformer encoder.
|
||||
Its shape is [T, N, C]
|
||||
Its shape is (T, N, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor that can be used for CTC decoding.
|
||||
Its shape is [N, T, C]
|
||||
Its shape is (N, T, C)
|
||||
"""
|
||||
x = self.encoder_output_layer(x)
|
||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
|
||||
return x
|
||||
|
||||
@torch.jit.export
|
||||
def decoder_forward(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
@ -247,7 +248,7 @@ class Transformer(nn.Module):
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
It's the output of the encoder with shape [T, N, C]
|
||||
It's the output of the encoder with shape (T, N, C)
|
||||
memory_key_padding_mask:
|
||||
The padding mask from the encoder.
|
||||
token_ids:
|
||||
@ -264,11 +265,15 @@ class Transformer(nn.Module):
|
||||
"""
|
||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||
ys_in = [torch.tensor(y) for y in ys_in]
|
||||
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=eos_id)
|
||||
ys_in_pad = pad_sequence(
|
||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
||||
)
|
||||
|
||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||
ys_out = [torch.tensor(y) for y in ys_out]
|
||||
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=-1)
|
||||
ys_out_pad = pad_sequence(
|
||||
ys_out, batch_first=True, padding_value=float(-1)
|
||||
)
|
||||
|
||||
device = memory.device
|
||||
ys_in_pad = ys_in_pad.to(device)
|
||||
@ -301,18 +306,19 @@ class Transformer(nn.Module):
|
||||
|
||||
return decoder_loss
|
||||
|
||||
@torch.jit.export
|
||||
def decoder_nll(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
token_ids: List[List[int]],
|
||||
token_ids: List[torch.Tensor],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
It's the output of the encoder with shape [T, N, C]
|
||||
It's the output of the encoder with shape (T, N, C)
|
||||
memory_key_padding_mask:
|
||||
The padding mask from the encoder.
|
||||
token_ids:
|
||||
@ -328,14 +334,23 @@ class Transformer(nn.Module):
|
||||
"""
|
||||
# The common part between this function and decoder_forward could be
|
||||
# extracted as a separate function.
|
||||
if isinstance(token_ids[0], torch.Tensor):
|
||||
# This branch is executed by torchscript in C++.
|
||||
# See https://github.com/k2-fsa/k2/pull/870
|
||||
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
|
||||
token_ids = [tolist(t) for t in token_ids]
|
||||
|
||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||
ys_in = [torch.tensor(y) for y in ys_in]
|
||||
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=eos_id)
|
||||
ys_in_pad = pad_sequence(
|
||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
||||
)
|
||||
|
||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||
ys_out = [torch.tensor(y) for y in ys_out]
|
||||
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=-1)
|
||||
ys_out_pad = pad_sequence(
|
||||
ys_out, batch_first=True, padding_value=float(-1)
|
||||
)
|
||||
|
||||
device = memory.device
|
||||
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||
@ -649,25 +664,25 @@ class PositionalEncoding(nn.Module):
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
self.pe = None
|
||||
# not doing: self.pe = None because of errors thrown by torchscript
|
||||
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
||||
|
||||
def extend_pe(self, x: torch.Tensor) -> None:
|
||||
"""Extend the time t in the positional encoding if required.
|
||||
|
||||
The shape of `self.pe` is [1, T1, d_model]. The shape of the input x
|
||||
is [N, T, d_model]. If T > T1, then we change the shape of self.pe
|
||||
to [N, T, d_model]. Otherwise, nothing is done.
|
||||
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||
to (N, T, d_model). Otherwise, nothing is done.
|
||||
|
||||
Args:
|
||||
x:
|
||||
It is a tensor of shape [N, T, C].
|
||||
It is a tensor of shape (N, T, C).
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
@ -678,7 +693,7 @@ class PositionalEncoding(nn.Module):
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
# Now pe is of shape [1, T, d_model], where T is x.size(1)
|
||||
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
@ -687,10 +702,10 @@ class PositionalEncoding(nn.Module):
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is [N, T, C]
|
||||
Its shape is (N, T, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape [N, T, C]
|
||||
Return a tensor of shape (N, T, C)
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||
@ -972,10 +987,7 @@ def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
||||
Return a new list-of-list, where each sublist starts
|
||||
with SOS ID.
|
||||
"""
|
||||
ans = []
|
||||
for utt in token_ids:
|
||||
ans.append([sos_id] + utt)
|
||||
return ans
|
||||
return [[sos_id] + utt for utt in token_ids]
|
||||
|
||||
|
||||
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||
@ -992,7 +1004,9 @@ def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||
Return a new list-of-list, where each sublist ends
|
||||
with EOS ID.
|
||||
"""
|
||||
ans = []
|
||||
for utt in token_ids:
|
||||
ans.append(utt + [eos_id])
|
||||
return ans
|
||||
return [utt + [eos_id] for utt in token_ids]
|
||||
|
||||
|
||||
def tolist(t: torch.Tensor) -> List[int]:
|
||||
"""Used by jit"""
|
||||
return torch.jit.annotate(List[int], t.tolist())
|
||||
|
@ -103,7 +103,7 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||
|
||||
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||
LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
|
||||
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||
|
||||
LG = k2.remove_epsilon(LG)
|
||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||
|
@ -25,6 +25,7 @@ The generated fbank features are saved in data/fbank.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
@ -43,7 +44,7 @@ torch.set_num_interop_threads(1)
|
||||
|
||||
def compute_fbank_aishell(num_mel_bins: int = 80):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank40")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
|
||||
dataset_parts = (
|
||||
|
@ -25,6 +25,7 @@ The generated fbank features are saved in data/fbank.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
@ -43,7 +44,7 @@ torch.set_num_interop_threads(1)
|
||||
|
||||
def compute_fbank_musan(num_mel_bins: int = 80):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank40")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
|
||||
dataset_parts = (
|
||||
|
@ -27,7 +27,6 @@ stop_stage=10
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
@ -88,7 +87,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
# We assume that you have downloaded the aishell corpus
|
||||
# to $dl_dir/aishell
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare aishell -j $nj $dl_dir/aishell data/manifests
|
||||
lhotse prepare aishell $dl_dir/aishell data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
|
@ -1,4 +0,0 @@
|
||||
|
||||
Please visit
|
||||
<https://icefall.readthedocs.io/en/latest/recipes/aishell/tdnn_lstm_ctc.html>
|
||||
for how to run this recipe.
|
@ -1,335 +0,0 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.dataset.datamodule import DataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class AishellAsrDataModule(DataModule):
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = self.train_cuts()
|
||||
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = [
|
||||
SpecAugment(
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
]
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = self.valid_cuts()
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = SingleCutSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
cuts = self.test_cuts()
|
||||
is_list = isinstance(cuts, list)
|
||||
test_loaders = []
|
||||
if not is_list:
|
||||
cuts = [cuts]
|
||||
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
)
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = SingleCutSampler(
|
||||
cuts_test, max_duration=self.args.max_duration
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test, batch_size=None, sampler=sampler, num_workers=1
|
||||
)
|
||||
test_loaders.append(test_dl)
|
||||
|
||||
if is_list:
|
||||
return test_loaders
|
||||
else:
|
||||
return test_loaders[0]
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train.json.gz"
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(
|
||||
self.args.feature_dir / "cuts_dev.json.gz"
|
||||
)
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
test_sets = ["test"]
|
||||
cuts = []
|
||||
for test_set in test_sets:
|
||||
logging.debug("About to get test cuts")
|
||||
cuts.append(
|
||||
load_manifest(
|
||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts
|
@ -1,399 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from model import TdnnLstm
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=19,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is nbest.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--export",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""When enabled, the averaged model is saved to
|
||||
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("tdnn_lstm_ctc/exp/"),
|
||||
"lang_dir": Path("data/lang_phone"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
# parameters for tdnn_lstm_ctc
|
||||
"subsampling_factor": 3,
|
||||
"feature_dim": 80,
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 7,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if the decoding method is 1best, the key is the string
|
||||
`no_rescore`. If the decoding method is nbest, the key is the
|
||||
string `no_rescore-xxx`, xxx is the num_paths.
|
||||
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is [N, T, C]
|
||||
|
||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||
|
||||
nnet_output = model(feature)
|
||||
# nnet_output is [N, T, C]
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"] // params.subsampling_factor,
|
||||
supervisions["num_frames"] // params.subsampling_factor,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
)
|
||||
|
||||
assert params.method in ["1best", "nbest"]
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
key = f"no_rescore-{params.num_paths}"
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if decoding method is 1best,
|
||||
or it may be "no-rescoer-100" if decoding method is nbest.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
# We compute CER for aishell dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((list("".join(res[0])), list("".join(res[1]))))
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results_char)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tCER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||
)
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
torch.save(
|
||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
# CAUTION: `test_sets` is for displaying only.
|
||||
# If you want to skip test-clean, you have to skip
|
||||
# it inside the for loop. That is, use
|
||||
#
|
||||
# if test_set == 'test-clean': continue
|
||||
#
|
||||
test_sets = ["test"]
|
||||
for test_set, test_dl in zip(test_sets, aishell.test_dataloaders()):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,103 +0,0 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class TdnnLstm(nn.Module):
|
||||
def __init__(
|
||||
self, num_features: int, num_classes: int, subsampling_factor: int = 3
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
num_classes:
|
||||
The output dimension of the model.
|
||||
subsampling_factor:
|
||||
It reduces the number of output frames by this factor.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_features = num_features
|
||||
self.num_classes = num_classes
|
||||
self.subsampling_factor = subsampling_factor
|
||||
self.tdnn = nn.Sequential(
|
||||
nn.Conv1d(
|
||||
in_channels=num_features,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=500,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=500,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=self.subsampling_factor, # stride: subsampling_factor!
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
)
|
||||
self.lstms = nn.ModuleList(
|
||||
[
|
||||
nn.LSTM(input_size=500, hidden_size=500, num_layers=1)
|
||||
for _ in range(5)
|
||||
]
|
||||
)
|
||||
self.lstm_bnorms = nn.ModuleList(
|
||||
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
|
||||
)
|
||||
self.dropout = nn.Dropout(0.2)
|
||||
self.linear = nn.Linear(in_features=500, out_features=self.num_classes)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Its shape is [N, C, T]
|
||||
|
||||
Returns:
|
||||
The output tensor has shape [N, T, C]
|
||||
"""
|
||||
x = self.tdnn(x)
|
||||
x = x.permute(2, 0, 1) # (N, C, T) -> (T, N, C) -> how LSTM expects it
|
||||
for lstm, bnorm in zip(self.lstms, self.lstm_bnorms):
|
||||
x_new, _ = lstm(x)
|
||||
x_new = bnorm(x_new.permute(1, 2, 0)).permute(
|
||||
2, 0, 1
|
||||
) # (T, N, C) -> (N, C, T) -> (T, N, C)
|
||||
x_new = self.dropout(x_new)
|
||||
x = x_new + x # skip connections
|
||||
x = x.transpose(
|
||||
1, 0
|
||||
) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim
|
||||
x = self.linear(x)
|
||||
x = nn.functional.log_softmax(x, dim=-1)
|
||||
return x
|
@ -1,231 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torchaudio
|
||||
from model import TdnnLstm
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
one_best_decoding,
|
||||
)
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Use the best path as decoding output. Only the transformer encoder
|
||||
output is used for decoding. We call it HLG decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 3,
|
||||
"num_classes": 220,
|
||||
"sample_rate": 16000,
|
||||
"search_beam": 20,
|
||||
"output_beam": 7,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=params.num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
features = features.permute(0, 2, 1) # now features is [N, C, T]
|
||||
|
||||
with torch.no_grad():
|
||||
nnet_output = model(features)
|
||||
# nnet_output is [N, T, C]
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
supervision_segments = torch.tensor(
|
||||
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
assert(params.method == "1best")
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,616 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TdnnLstm
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("tdnn_lstm_ctc/exp_lr1e-4"),
|
||||
"lang_dir": Path("data/lang_phone"),
|
||||
"lr": 1e-4,
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 5e-4,
|
||||
"subsampling_factor": 3,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 10,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 1000,
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
):
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of TdnnLstm in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is [N, T, C]
|
||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output = model(feature)
|
||||
# nnet_output is [N, T, C]
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervisions = batch["supervisions"]
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
decoding_graph = graph_compiler.compile(texts)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
# train_frames and valid_frames are used for printing.
|
||||
if is_training:
|
||||
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||
else:
|
||||
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = 0.0
|
||||
tot_frames = 0.0
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
tot_loss += loss_cpu
|
||||
tot_frames += params.valid_frames
|
||||
|
||||
if world_size > 1:
|
||||
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
|
||||
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||
s = s.cpu().tolist()
|
||||
tot_loss = s[0]
|
||||
tot_frames = s[1]
|
||||
|
||||
params.valid_loss = tot_loss / tot_frames
|
||||
|
||||
if params.valid_loss < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = params.valid_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = 0.0 # reset after params.reset_interval of batches
|
||||
tot_frames = 0.0 # reset after params.reset_interval of batches
|
||||
|
||||
params.tot_loss = 0.0
|
||||
params.tot_frames = 0.0
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.train_frames
|
||||
tot_loss += loss_cpu
|
||||
tot_avg_loss = tot_loss / tot_frames
|
||||
|
||||
params.tot_frames += params.train_frames
|
||||
params.tot_loss += loss_cpu
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/current_loss",
|
||||
loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_loss",
|
||||
tot_avg_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||
tot_loss = 0
|
||||
tot_frames = 0
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
|
||||
params.train_loss = params.tot_loss / params.tot_frames
|
||||
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = optim.AdamW(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
scheduler = StepLR(optimizer, step_size=8, gamma=0.1)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
train_dl = aishell.train_dataloaders()
|
||||
valid_dl = aishell.valid_dataloaders()
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
if epoch > params.start_epoch:
|
||||
logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}")
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user