add the pruned_transducer_stateless7_streaming recipe for commonvoice

This commit is contained in:
lishaojie 2023-04-21 22:19:22 +08:00
parent d67a49afe4
commit f31d31ff1c
40 changed files with 17634 additions and 13 deletions

View File

@ -26,7 +26,7 @@ repos:
# E121,E123,E126,E226,E24,E704,W503,W504
- repo: https://github.com/pycqa/isort
rev: 5.10.1
rev: 5.12.0
hooks:
- id: isort
args: ["--profile=black"]

View File

@ -0,0 +1,166 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates HLG from
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
- L, the lexicon, built from lang_dir/L_disambig.pt
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_n_gram.fst.txt
The generated HLG is saved in $lang_dir/HLG.pt
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
from icefall.lexicon import Lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lm",
type=str,
default="G_3_gram",
help="""Stem name for LM used in HLG compiling.
""",
)
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
return parser.parse_args()
def compile_HLG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
lm:
The language stem base name.
Return:
An FSA representing HLG.
"""
lexicon = Lexicon(lang_dir)
max_token_id = max(lexicon.tokens)
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
H = k2.ctc_topo(max_token_id)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
if Path(f"{lang_dir}/lm/{lm}.pt").is_file():
logging.info(f"Loading pre-compiled {lm}")
d = torch.load(f"{lang_dir}/lm/{lm}.pt")
G = k2.Fsa.from_dict(d)
else:
logging.info(f"Loading {lm}.fst.txt")
with open(f"{lang_dir}/lm/{lm}.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
torch.save(G.as_dict(), f"{lang_dir}/lm/{lm}.pt")
first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]
L = k2.arc_sort(L)
G = k2.arc_sort(G)
logging.info("Intersecting L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}")
logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(f"LG shape after k2.connect: {LG.shape}")
logging.info(type(LG.aux_labels))
logging.info("Determinizing LG")
LG = k2.determinize(LG)
logging.info(type(LG.aux_labels))
logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)
logging.info("Removing disambiguation symbols on LG")
LG.labels[LG.labels >= first_token_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set LG.properties to None
LG.__dict__["_properties"] = None
assert isinstance(LG.aux_labels, k2.RaggedTensor)
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
logging.info("Composing H and LG")
# CAUTION: The name of the inner_labels is fixed
# to `tokens`. If you want to change it, please
# also change other places in icefall that are using
# it.
HLG = k2.compose(H, LG, inner_labels="tokens")
logging.info("Connecting LG")
HLG = k2.connect(HLG)
logging.info("Arc sorting LG")
HLG = k2.arc_sort(HLG)
logging.info(f"HLG.shape: {HLG.shape}")
return HLG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
if (lang_dir / "HLG.pt").is_file():
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
return
logging.info(f"Processing {lang_dir}")
HLG = compile_HLG(lang_dir, args.lm)
logging.info(f"Saving HLG.pt to {lang_dir}")
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,141 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates LG from
- L, the lexicon, built from lang_dir/L_disambig.pt
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_3_gram.fst.txt
The generated LG is saved in $lang_dir/LG.pt
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
from icefall.lexicon import Lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
return parser.parse_args()
def compile_LG(lang_dir: str) -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
Return:
An FSA representing LG.
"""
lexicon = Lexicon(lang_dir)
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
if Path(f"{lang_dir}/lm/G_3_gram.pt").is_file():
logging.info("Loading pre-compiled G_3_gram")
d = torch.load(f"{lang_dir}/lm/G_3_gram.pt")
G = k2.Fsa.from_dict(d)
else:
logging.info("Loading G_3_gram.fst.txt")
with open(f"{lang_dir}/lm/G_3_gram.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
torch.save(G.as_dict(), f"{lang_dir}/lm/G_3_gram.pt")
first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]
L = k2.arc_sort(L)
G = k2.arc_sort(G)
logging.info("Intersecting L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}")
logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(f"LG shape after k2.connect: {LG.shape}")
logging.info(type(LG.aux_labels))
logging.info("Determinizing LG")
LG = k2.determinize(LG, k2.DeterminizeWeightPushingType.kLogWeightPushing)
logging.info(type(LG.aux_labels))
logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)
logging.info("Removing disambiguation symbols on LG")
LG.labels[LG.labels >= first_token_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set LG.properties to None
LG.__dict__["_properties"] = None
# assert isinstance(LG.aux_labels, k2.RaggedTensor)
# LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
if isinstance(LG.aux_labels, k2.RaggedTensor):
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
else:
LG.aux_labels[LG.aux_labels >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
return LG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
if (lang_dir / "LG.pt").is_file():
logging.info(f"{lang_dir}/LG.pt already exists - skipping")
return
logging.info(f"Processing {lang_dir}")
LG = compile_LG(lang_dir)
logging.info(f"Saving LG.pt to {lang_dir}")
torch.save(LG.as_dict(), f"{lang_dir}/LG.pt")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -56,8 +56,8 @@ def get_args():
def compute_fbank_commonvoice_dev_test(language: str):
src_dir = Path(f"data/{language}/manifests")
output_dir = Path(f"data/{language}/fbank")
num_workers = 42
batch_duration = 600
num_workers = 16
batch_duration = 200
subsets = ("dev", "test")

View File

@ -43,9 +43,14 @@ def get_args():
return parser.parse_args()
def normalize_text(utt: str) -> str:
def normalize_text(utt: str, language: str) -> str:
utt = re.sub(r"[{0}]+".format("-"), " ", utt)
return re.sub(r"[^a-zA-Z\s]", "", utt).upper()
utt = re.sub("", "'", utt)
if language == "en":
return re.sub(r"[^a-zA-Z\s]", "", utt).upper()
if language == "fr":
utt = utt.upper()
return re.sub(r"[^A-ZÀÂÆÇÉÈÊËÎÏÔŒÙÛÜ' ]", "", utt)
def preprocess_commonvoice(
@ -94,7 +99,7 @@ def preprocess_commonvoice(
for sup in m["supervisions"]:
text = str(sup.text)
orig_text = text
sup.text = normalize_text(sup.text)
sup.text = normalize_text(sup.text, language)
text = str(sup.text)
if len(orig_text) != len(text):
logging.info(

View File

@ -36,8 +36,8 @@ num_splits=1000
# - speech
dl_dir=$PWD/download
release=cv-corpus-13.0-2023-03-09
lang=en
release=cv-corpus-12.0-2022-12-07
lang=fr
. shared/parse_options.sh || exit 1
@ -138,7 +138,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
if [ ! -e data/${lang}/fbank/.cv-${lang}_train.done ]; then
./local/compute_fbank_commonvoice_splits.py \
--num-workers $nj \
--batch-duration 600 \
--batch-duration 200 \
--start 0 \
--num-splits $num_splits \
--language $lang
@ -181,7 +181,7 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
@ -208,14 +208,14 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
@ -242,3 +242,55 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
fi
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
mkdir -p $lang_dir/lm
#3-gram used in building HLG, 4-gram used for LM rescoring
for ngram in 3 4; do
if [ ! -f $lang_dir/lm/${ngram}gram.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order ${ngram} \
-text $lang_dir/transcript_words.txt \
-lm $lang_dir/lm/${ngram}gram.arpa
fi
if [ ! -f $lang_dir/lm/${ngram}gram.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=${ngram} \
$lang_dir/lm/${ngram}gram.arpa > $lang_dir/lm/G_${ngram}_gram.fst.txt
fi
done
done
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Compile HLG"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Compile LG"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi

View File

@ -0,0 +1,9 @@
This recipe implements Streaming Zipformer-Transducer model.
See https://k2-fsa.github.io/icefall/recipes/Streaming-ASR/librispeech/zipformer_transducer.html for detailed tutorials.
[./emformer.py](./emformer.py) and [./train.py](./train.py)
are basically the same as
[./emformer2.py](./emformer2.py) and [./train2.py](./train2.py).
The only purpose of [./emformer2.py](./emformer2.py) and [./train2.py](./train2.py)
is for exporting to [sherpa-ncnn](https://github.com/k2-fsa/sherpa-ncnn).

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py

View File

@ -0,0 +1,422 @@
# Copyright 2021 Piotr Żelasko
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
AudioSamples,
OnTheFlyFeatures,
)
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class CommonVoiceAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--language",
type=str,
default="fr",
help="""Language of Common Voice""",
)
group.add_argument(
"--cv-manifest-dir",
type=Path,
default=Path("data/fr/fbank"),
help="Path to directory with CommonVoice train/dev/test cuts.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
input_strategy=eval(self.args.input_strategy)(),
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
return load_manifest_lazy(
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_train.jsonl.gz"
)
@lru_cache()
def dev_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
return load_manifest_lazy(
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_dev.jsonl.gz"
)
@lru_cache()
def test_cuts(self) -> CutSet:
logging.info("About to get test cuts")
return load_manifest_lazy(
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_test.jsonl.gz"
)

View File

@ -0,0 +1,810 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search (one best)
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method fast_beam_search_nbest \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(6) fast beam search (nbest oracle WER)
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from commonvoice_fr import CommonVoiceAsrDataModule
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7_streaming/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.01,
help="""
Used only when --decoding_method is fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
feature_lens += 30
feature = torch.nn.functional.pad(
feature,
pad=(0, 0, 0, 30),
value=LOG_EPS,
)
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif "fast_beam_search" in params.decoding_method:
key = f"beam_{params.beam}_"
key += f"max_contexts_{params.max_contexts}_"
key += f"max_states_{params.max_states}"
if "nbest" in params.decoding_method:
key += f"_num_paths_{params.num_paths}_"
key += f"nbest_scale_{params.nbest_scale}"
if "LG" in params.decoding_method:
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
word_table=word_table,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
# errs_info = (
# params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
# )
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{key}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
CommonVoiceAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if "nbest" in params.decoding_method:
params.suffix += f"-nbest-scale-{params.nbest_scale}"
params.suffix += f"-num-paths-{params.num_paths}"
if "LG" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, (
model.encoder.decode_chunk_size,
params.decode_chunk_len,
)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
word_table = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
commonvoice = CommonVoiceAsrDataModule(args)
test_cuts = commonvoice.test_cuts()
test_dl = commonvoice.test_dataloaders(test_cuts)
test_sets = "test-cv"
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_sets,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,151 @@
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple
import k2
import torch
from beam_search import Hypothesis, HypothesisList
from icefall.utils import AttributeDict
class DecodeStream(object):
def __init__(
self,
params: AttributeDict,
cut_id: str,
initial_states: List[torch.Tensor],
decoding_graph: Optional[k2.Fsa] = None,
device: torch.device = torch.device("cpu"),
) -> None:
"""
Args:
initial_states:
Initial decode states of the model, e.g. the return value of
`get_init_state` in conformer.py
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
Used only when decoding_method is fast_beam_search.
device:
The device to run this stream.
"""
if params.decoding_method == "fast_beam_search":
assert decoding_graph is not None
assert device == decoding_graph.device
self.params = params
self.cut_id = cut_id
self.LOG_EPS = math.log(1e-10)
self.states = initial_states
# It contains a 2-D tensors representing the feature frames.
self.features: torch.Tensor = None
self.num_frames: int = 0
# how many frames have been processed. (before subsampling).
# we only modify this value in `func:get_feature_frames`.
self.num_processed_frames: int = 0
self._done: bool = False
# The transcript of current utterance.
self.ground_truth: str = ""
# The decoding result (partial or final) of current utterance.
self.hyp: List = []
# how many frames have been processed, after subsampling (i.e. a
# cumulative sum of the second return value of
# encoder.streaming_forward
self.done_frames: int = 0
# It has two steps of feature subsampling in zipformer: out_lens=((x_lens-7)//2+1)//2
# 1) feature embedding: out_lens=(x_lens-7)//2
# 2) output subsampling: out_lens=(out_lens+1)//2
self.pad_length = 7
if params.decoding_method == "greedy_search":
self.hyp = [params.blank_id] * params.context_size
elif params.decoding_method == "modified_beam_search":
self.hyps = HypothesisList()
self.hyps.add(
Hypothesis(
ys=[params.blank_id] * params.context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
elif params.decoding_method == "fast_beam_search":
# The rnnt_decoding_stream for fast_beam_search.
self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream(
decoding_graph
)
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
@property
def done(self) -> bool:
"""Return True if all the features are processed."""
return self._done
@property
def id(self) -> str:
return self.cut_id
def set_features(
self,
features: torch.Tensor,
tail_pad_len: int = 0,
) -> None:
"""Set features tensor of current utterance."""
assert features.dim() == 2, features.dim()
self.features = torch.nn.functional.pad(
features,
(0, 0, 0, self.pad_length + tail_pad_len),
mode="constant",
value=self.LOG_EPS,
)
self.num_frames = self.features.size(0)
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
"""Consume chunk_size frames of features"""
chunk_length = chunk_size + self.pad_length
ret_length = min(self.num_frames - self.num_processed_frames, chunk_length)
ret_features = self.features[
self.num_processed_frames : self.num_processed_frames + ret_length # noqa
]
self.num_processed_frames += chunk_size
if self.num_processed_frames >= self.num_frames:
self._done = True
return ret_features, ret_length
def decoding_result(self) -> List[int]:
"""Obtain current decoding result."""
if self.params.decoding_method == "greedy_search":
return self.hyp[self.params.context_size :] # noqa
elif self.params.decoding_method == "modified_beam_search":
best_hyp = self.hyps.get_most_probable(length_norm=True)
return best_hyp.ys[self.params.context_size :] # noqa
else:
assert self.params.decoding_method == "fast_beam_search"
return self.hyp

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/decoder.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py

View File

@ -0,0 +1,367 @@
#!/usr/bin/env python3
"""
Please see
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
for more details about how to use this file.
We use
https://huggingface.co/pfluo/k2fsa-zipformer-chinese-english-mixed
to demonstrate the usage of this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/pfluo/k2fsa-zipformer-chinese-english-mixed
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_char_bpe/L.pt"
git lfs pull --include "data/lang_char_bpe/L_disambig.pt"
git lfs pull --include "data/lang_char_bpe/Linv.pt"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export to ncnn
./pruned_transducer_stateless7_streaming/export-for-ncnn-zh.py \
--lang-dir $repo/data/lang_char_bpe \
--exp-dir $repo/exp \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--num-encoder-layers "2,4,3,2,4" \
--feedforward-dims "1024,1024,1536,1536,1024" \
--nhead "8,8,8,8,8" \
--encoder-dims "384,384,384,384,384" \
--attention-dims "192,192,192,192,192" \
--encoder-unmasked-dims "256,256,256,256,256" \
--zipformer-downsampling-factors "1,2,4,8,2" \
--cnn-module-kernels "31,31,31,31,31" \
--decoder-dim 512 \
--joiner-dim 512
cd $repo/exp
pnnx encoder_jit_trace-pnnx.pt
pnnx decoder_jit_trace-pnnx.pt
pnnx joiner_jit_trace-pnnx.pt
You can find converted models at
https://huggingface.co/csukuangfj/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13
See ./streaming-ncnn-decode.py
and
https://github.com/k2-fsa/sherpa-ncnn
for usage.
"""
import argparse
import logging
from pathlib import Path
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train2 import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7_streaming/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
add_model_arguments(parser)
return parser
def export_encoder_model_jit_trace(
encoder_model: torch.nn.Module,
encoder_filename: str,
) -> None:
"""Export the given encoder model with torch.jit.trace()
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
encoder_model.__class__.forward = encoder_model.__class__.streaming_forward
decode_chunk_len = encoder_model.decode_chunk_size * 2
pad_length = 7
T = decode_chunk_len + pad_length # 32 + 7 = 39
logging.info(f"decode_chunk_len: {decode_chunk_len}")
logging.info(f"T: {T}")
x = torch.zeros(1, T, 80, dtype=torch.float32)
states = encoder_model.get_init_state()
traced_model = torch.jit.trace(encoder_model, (x, states))
traced_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_trace(
decoder_model: torch.nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
traced_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_trace(
joiner_model: torch.nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
traced_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
setup_logger(f"{params.exp_dir}/log-export/log-export-ncnn")
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True, is_pnnx=True)
encoder_num_param = sum([p.numel() for p in model.encoder.parameters()])
decoder_num_param = sum([p.numel() for p in model.decoder.parameters()])
joiner_num_param = sum([p.numel() for p in model.joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
logging.info("Using torch.jit.trace()")
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
main()

View File

@ -0,0 +1,369 @@
#!/usr/bin/env python3
"""
Please see
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
for more details about how to use this file.
We use
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
to demonstrate the usage of this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export to ncnn
./pruned_transducer_stateless7_streaming/export-for-ncnn.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--exp-dir $repo/exp \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
\
--decode-chunk-len 32 \
--num-encoder-layers "2,4,3,2,4" \
--feedforward-dims "1024,1024,2048,2048,1024" \
--nhead "8,8,8,8,8" \
--encoder-dims "384,384,384,384,384" \
--attention-dims "192,192,192,192,192" \
--encoder-unmasked-dims "256,256,256,256,256" \
--zipformer-downsampling-factors "1,2,4,8,2" \
--cnn-module-kernels "31,31,31,31,31" \
--decoder-dim 512 \
--joiner-dim 512
cd $repo/exp
pnnx encoder_jit_trace-pnnx.pt
pnnx decoder_jit_trace-pnnx.pt
pnnx joiner_jit_trace-pnnx.pt
You can find converted models at
https://huggingface.co/csukuangfj/sherpa-ncnn-streaming-zipformer-en-2023-02-13
See ./streaming-ncnn-decode.py
and
https://github.com/k2-fsa/sherpa-ncnn
for usage.
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train2 import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7_streaming/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
add_model_arguments(parser)
return parser
def export_encoder_model_jit_trace(
encoder_model: torch.nn.Module,
encoder_filename: str,
) -> None:
"""Export the given encoder model with torch.jit.trace()
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
encoder_model.__class__.forward = encoder_model.__class__.streaming_forward
decode_chunk_len = encoder_model.decode_chunk_size * 2
pad_length = 7
T = decode_chunk_len + pad_length # 32 + 7 = 39
logging.info(f"decode_chunk_len: {decode_chunk_len}")
logging.info(f"T: {T}")
x = torch.zeros(1, T, 80, dtype=torch.float32)
states = encoder_model.get_init_state()
traced_model = torch.jit.trace(encoder_model, (x, states))
traced_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_trace(
decoder_model: torch.nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
traced_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_trace(
joiner_model: torch.nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
traced_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
setup_logger(f"{params.exp_dir}/log-export/log-export-ncnn")
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True, is_pnnx=True)
encoder_num_param = sum([p.numel() for p in model.encoder.parameters()])
decoder_num_param = sum([p.numel() for p in model.decoder.parameters()])
joiner_num_param = sum([p.numel() for p in model.joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
logging.info("Using torch.jit.trace()")
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
main()

View File

@ -0,0 +1,647 @@
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
"""
This script exports a transducer model from PyTorch to ONNX.
We use the pre-trained model from
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless7_streaming/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--exp-dir $repo/exp/
It will generate the following 3 files in $repo/exp
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
See ./onnx_pretrained.py for how to use the exported models.
"""
import argparse
import logging
from pathlib import Path
from typing import Dict, List, Tuple
import onnx
import sentencepiece as spm
import torch
import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from torch import Tensor
from train import add_model_arguments, get_params, get_transducer_model
from zipformer import Zipformer
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7_streaming/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
class OnnxEncoder(nn.Module):
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
def __init__(self, encoder: Zipformer, encoder_proj: nn.Linear):
"""
Args:
encoder:
A Zipformer encoder.
encoder_proj:
The projection layer for encoder from the joiner.
"""
super().__init__()
self.encoder = encoder
self.encoder_proj = encoder_proj
def forward(self, x: Tensor, states: List[Tensor]) -> Tuple[Tensor, List[Tensor]]:
"""Please see the help information of Zipformer.streaming_forward"""
N = x.size(0)
T = x.size(1)
x_lens = torch.tensor([T] * N, device=x.device)
output, _, new_states = self.encoder.streaming_forward(
x=x,
x_lens=x_lens,
states=states,
)
output = self.encoder_proj(output)
# Now output is of shape (N, T, joiner_dim)
return output, new_states
class OnnxDecoder(nn.Module):
"""A wrapper for Decoder and the decoder_proj from the joiner"""
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
super().__init__()
self.decoder = decoder
self.decoder_proj = decoder_proj
def forward(self, y: torch.Tensor) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, context_size).
Returns
Return a 2-D tensor of shape (N, joiner_dim)
"""
need_pad = False
decoder_output = self.decoder(y, need_pad=need_pad)
decoder_output = decoder_output.squeeze(1)
output = self.decoder_proj(decoder_output)
return output
class OnnxJoiner(nn.Module):
"""A wrapper for the joiner"""
def __init__(self, output_linear: nn.Linear):
super().__init__()
self.output_linear = output_linear
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))
return logit
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = value
onnx.save(model, filename)
def export_encoder_model_onnx(
encoder_model: OnnxEncoder,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""
Onnx model inputs:
- 0: src
- many state tensors (the exact number depending on the actual model)
Onnx model outputs:
- 0: output, its shape is (N, T, joiner_dim)
- many state tensors (the exact number depending on the actual model)
Args:
encoder_model:
The model to be exported
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
encoder_model.encoder.__class__.forward = (
encoder_model.encoder.__class__.streaming_forward
)
decode_chunk_len = encoder_model.encoder.decode_chunk_size * 2
pad_length = 7
T = decode_chunk_len + pad_length
logging.info(f"decode_chunk_len: {decode_chunk_len}")
logging.info(f"pad_length: {pad_length}")
logging.info(f"T: {T}")
x = torch.rand(1, T, 80, dtype=torch.float32)
init_state = encoder_model.encoder.get_init_state()
num_encoders = encoder_model.encoder.num_encoders
logging.info(f"num_encoders: {num_encoders}")
logging.info(f"len(init_state): {len(init_state)}")
inputs = {}
input_names = ["x"]
outputs = {}
output_names = ["encoder_out"]
def build_inputs_outputs(tensors, name, N):
for i, s in enumerate(tensors):
logging.info(f"{name}_{i}.shape: {s.shape}")
inputs[f"{name}_{i}"] = {N: "N"}
outputs[f"new_{name}_{i}"] = {N: "N"}
input_names.append(f"{name}_{i}")
output_names.append(f"new_{name}_{i}")
num_encoder_layers = ",".join(map(str, encoder_model.encoder.num_encoder_layers))
encoder_dims = ",".join(map(str, encoder_model.encoder.encoder_dims))
attention_dims = ",".join(map(str, encoder_model.encoder.attention_dims))
cnn_module_kernels = ",".join(map(str, encoder_model.encoder.cnn_module_kernels))
ds = encoder_model.encoder.zipformer_downsampling_factors
left_context_len = encoder_model.encoder.left_context_len
left_context_len = [left_context_len // k for k in ds]
left_context_len = ",".join(map(str, left_context_len))
meta_data = {
"model_type": "zipformer",
"version": "1",
"model_author": "k2-fsa",
"decode_chunk_len": str(decode_chunk_len), # 32
"T": str(T), # 39
"num_encoder_layers": num_encoder_layers,
"encoder_dims": encoder_dims,
"attention_dims": attention_dims,
"cnn_module_kernels": cnn_module_kernels,
"left_context_len": left_context_len,
}
logging.info(f"meta_data: {meta_data}")
# (num_encoder_layers, 1)
cached_len = init_state[num_encoders * 0 : num_encoders * 1]
# (num_encoder_layers, 1, encoder_dim)
cached_avg = init_state[num_encoders * 1 : num_encoders * 2]
# (num_encoder_layers, left_context_len, 1, attention_dim)
cached_key = init_state[num_encoders * 2 : num_encoders * 3]
# (num_encoder_layers, left_context_len, 1, attention_dim//2)
cached_val = init_state[num_encoders * 3 : num_encoders * 4]
# (num_encoder_layers, left_context_len, 1, attention_dim//2)
cached_val2 = init_state[num_encoders * 4 : num_encoders * 5]
# (num_encoder_layers, 1, encoder_dim, cnn_module_kernel-1)
cached_conv1 = init_state[num_encoders * 5 : num_encoders * 6]
# (num_encoder_layers, 1, encoder_dim, cnn_module_kernel-1)
cached_conv2 = init_state[num_encoders * 6 : num_encoders * 7]
build_inputs_outputs(cached_len, "cached_len", 1)
build_inputs_outputs(cached_avg, "cached_avg", 1)
build_inputs_outputs(cached_key, "cached_key", 2)
build_inputs_outputs(cached_val, "cached_val", 2)
build_inputs_outputs(cached_val2, "cached_val2", 2)
build_inputs_outputs(cached_conv1, "cached_conv1", 1)
build_inputs_outputs(cached_conv2, "cached_conv2", 1)
logging.info(inputs)
logging.info(outputs)
logging.info(input_names)
logging.info(output_names)
torch.onnx.export(
encoder_model,
(x, init_state),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=input_names,
output_names=output_names,
dynamic_axes={
"x": {0: "N"},
"encoder_out": {0: "N"},
**inputs,
**outputs,
},
)
add_meta_data(filename=encoder_filename, meta_data=meta_data)
def export_decoder_model_onnx(
decoder_model: nn.Module,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
context_size = decoder_model.decoder.context_size
vocab_size = decoder_model.decoder.vocab_size
y = torch.zeros(10, context_size, dtype=torch.int64)
torch.onnx.export(
decoder_model,
y,
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
meta_data = {
"context_size": str(context_size),
"vocab_size": str(vocab_size),
}
add_meta_data(filename=decoder_filename, meta_data=meta_data)
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- encoder_out: a tensor of shape (N, joiner_dim)
- decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
"""
joiner_dim = joiner_model.output_linear.weight.shape[1]
logging.info(f"joiner dim: {joiner_dim}")
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"encoder_out",
"decoder_out",
],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
meta_data = {
"joiner_dim": str(joiner_dim),
}
add_meta_data(filename=joiner_filename, meta_data=meta_data)
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
setup_logger(f"{params.exp_dir}/log-export/log-export-onnx")
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True)
encoder = OnnxEncoder(
encoder=model.encoder,
encoder_proj=model.joiner.encoder_proj,
)
decoder = OnnxDecoder(
decoder=model.decoder,
decoder_proj=model.joiner.decoder_proj,
)
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
if params.iter > 0:
suffix = f"iter-{params.iter}"
else:
suffix = f"epoch-{params.epoch}"
suffix += f"-avg-{params.avg}"
if params.use_averaged_model:
suffix += "-with-averaged-model"
opset_version = 13
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
export_encoder_model_onnx(
encoder,
encoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported encoder to {encoder_filename}")
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
export_decoder_model_onnx(
decoder,
decoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported decoder to {decoder_filename}")
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
export_joiner_model_onnx(
joiner,
joiner_filename,
opset_version=opset_version,
)
logging.info(f"Exported joiner to {joiner_filename}")
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
logging.info("Generate int8 quantization models")
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
model_output=encoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=decoder_filename,
model_output=decoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
quantize_dynamic(
model_input=joiner_filename,
model_output=joiner_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,878 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
(1) Export to torchscript model using torch.jit.script()
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 9 \
--jit 1
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
load it by `torch.jit.load("cpu_jit.pt")`.
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
Check
https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
(2) Export `model.state_dict()`
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.
To use the generated file with `pruned_transducer_stateless7_streaming/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./pruned_transducer_stateless7_streaming/decode.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
Check ./pretrained.py for its usage.
Note: If you don't want to train a model from scratch, we have
provided one for you. You can get it at
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
with the following commands:
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
# You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/exp
(3) Export to ONNX format with pretrained.pt
cd ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
ln -s pretrained.pt epoch-999.pt
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--use-averaged-model False \
--epoch 999 \
--avg 1 \
--fp16 \
--onnx 1
It will generate the following files in the given `exp_dir`.
Check `onnx_check.py` for how to use them.
- encoder.onnx
- decoder.onnx
- joiner.onnx
- joiner_encoder_proj.onnx
- joiner_decoder_proj.onnx
Check
https://github.com/k2-fsa/sherpa-onnx
for how to use the exported models outside of icefall.
(4) Export to ONNX format for triton server
cd ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
ln -s pretrained.pt epoch-999.pt
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--use-averaged-model False \
--epoch 999 \
--avg 1 \
--fp16 \
--onnx-triton 1 \
--onnx 1
It will generate the following files in the given `exp_dir`.
Check `onnx_check.py` for how to use them.
- encoder.onnx
- decoder.onnx
- joiner.onnx
Check
https://github.com/k2-fsa/sherpa/tree/master/triton
for how to use the exported models outside of icefall.
"""
import argparse
import logging
from pathlib import Path
import onnxruntime
import sentencepiece as spm
import torch
import torch.nn as nn
from onnx_model_wrapper import OnnxStreamingEncoder, TritonOnnxDecoder, TritonOnnxJoiner
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from zipformer import stack_states
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7_streaming/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate a file named cpu_jit.pt
Check ./jit_pretrained.py for how to use it.
""",
)
parser.add_argument(
"--onnx",
type=str2bool,
default=False,
help="""If True, --jit is ignored and it exports the model
to onnx format. It will generate the following files:
- encoder.onnx
- decoder.onnx
- joiner.onnx
- joiner_encoder_proj.onnx
- joiner_decoder_proj.onnx
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
""",
)
parser.add_argument(
"--onnx-triton",
type=str2bool,
default=False,
help="""If True, --onnx would export model into the following files:
- encoder.onnx
- decoder.onnx
- joiner.onnx
These files would be used for https://github.com/k2-fsa/sherpa/tree/master/triton.
""",
)
parser.add_argument(
"--fp16",
action="store_true",
help="whether to export fp16 onnx model, default false",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
def test_acc(xlist, blist, rtol=1e-3, atol=1e-5, tolerate_small_mismatch=True):
for a, b in zip(xlist, blist):
try:
torch.testing.assert_allclose(a, b, rtol=rtol, atol=atol)
except AssertionError as error:
if tolerate_small_mismatch:
print("small mismatch detected", error)
else:
return False
return True
def export_encoder_model_onnx(
encoder_model: nn.Module,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
and it has two outputs:
- encoder_out, a tensor of shape (N, T, C)
- encoder_out_lens, a tensor of shape (N,)
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
batch_size = 17
seq_len = 101
torch.manual_seed(0)
x = torch.rand(batch_size, seq_len, 80, dtype=torch.float32)
x_lens = torch.tensor([seq_len - i for i in range(batch_size)], dtype=torch.int64)
# encoder_model = torch.jit.script(encoder_model)
# It throws the following error for the above statement
#
# RuntimeError: Exporting the operator __is_ to ONNX opset version
# 11 is not supported. Please feel free to request support or
# submit a pull request on PyTorch GitHub.
#
# I cannot find which statement causes the above error.
# torch.onnx.export() will use torch.jit.trace() internally, which
# works well for the current reworked model
initial_states = [encoder_model.get_init_state() for _ in range(batch_size)]
states = stack_states(initial_states)
left_context_len = encoder_model.decode_chunk_size * encoder_model.num_left_chunks
encoder_attention_dim = encoder_model.encoders[0].attention_dim
len_cache = torch.cat(states[: encoder_model.num_encoders]).transpose(0, 1) # B,15
avg_cache = torch.cat(
states[encoder_model.num_encoders : 2 * encoder_model.num_encoders]
).transpose(
0, 1
) # [B,15,384]
cnn_cache = torch.cat(states[5 * encoder_model.num_encoders :]).transpose(
0, 1
) # [B,2*15,384,cnn_kernel-1]
pad_tensors = [
torch.nn.functional.pad(
tensor,
(
0,
encoder_attention_dim - tensor.shape[-1],
0,
0,
0,
left_context_len - tensor.shape[1],
0,
0,
),
)
for tensor in states[
2 * encoder_model.num_encoders : 5 * encoder_model.num_encoders
]
]
attn_cache = torch.cat(pad_tensors).transpose(0, 2) # [B,64,15*3,192]
encoder_model_wrapper = OnnxStreamingEncoder(encoder_model)
torch.onnx.export(
encoder_model_wrapper,
(x, x_lens, len_cache, avg_cache, attn_cache, cnn_cache),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"x",
"x_lens",
"len_cache",
"avg_cache",
"attn_cache",
"cnn_cache",
],
output_names=[
"encoder_out",
"encoder_out_lens",
"new_len_cache",
"new_avg_cache",
"new_attn_cache",
"new_cnn_cache",
],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
"len_cache": {0: "N"},
"avg_cache": {0: "N"},
"attn_cache": {0: "N"},
"cnn_cache": {0: "N"},
"new_len_cache": {0: "N"},
"new_avg_cache": {0: "N"},
"new_attn_cache": {0: "N"},
"new_cnn_cache": {0: "N"},
},
)
logging.info(f"Saved to {encoder_filename}")
# Test onnx encoder with torch native encoder
encoder_model.eval()
(
encoder_out_torch,
encoder_out_lens_torch,
new_states_torch,
) = encoder_model.streaming_forward(
x=x,
x_lens=x_lens,
states=states,
)
ort_session = onnxruntime.InferenceSession(
str(encoder_filename), providers=["CPUExecutionProvider"]
)
ort_inputs = {
"x": x.numpy(),
"x_lens": x_lens.numpy(),
"len_cache": len_cache.numpy(),
"avg_cache": avg_cache.numpy(),
"attn_cache": attn_cache.numpy(),
"cnn_cache": cnn_cache.numpy(),
}
ort_outs = ort_session.run(None, ort_inputs)
assert test_acc(
[encoder_out_torch.numpy(), encoder_out_lens_torch.numpy()], ort_outs[:2]
)
logging.info(f"{encoder_filename} acc test succeeded.")
def export_decoder_model_onnx(
decoder_model: nn.Module,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = False # Always False, so we can use torch.jit.trace() here
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
# in this case
torch.onnx.export(
decoder_model,
(y, need_pad),
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y", "need_pad"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_filename}")
def export_decoder_model_onnx_triton(
decoder_model: nn.Module,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
decoder_model = TritonOnnxDecoder(decoder_model)
torch.onnx.export(
decoder_model,
(y,),
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- projected_encoder_out: a tensor of shape (N, joiner_dim)
- projected_decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
The exported encoder_proj model has one input:
- encoder_out: a tensor of shape (N, encoder_out_dim)
and produces one output:
- projected_encoder_out: a tensor of shape (N, joiner_dim)
The exported decoder_proj model has one input:
- decoder_out: a tensor of shape (N, decoder_out_dim)
and produces one output:
- projected_decoder_out: a tensor of shape (N, joiner_dim)
"""
encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx")
decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx")
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
projected_encoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32)
project_input = False
# Note: It uses torch.jit.trace() internally
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out, project_input),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"encoder_out",
"decoder_out",
"project_input",
],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
logging.info(f"Saved to {joiner_filename}")
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model.encoder_proj,
encoder_out,
encoder_proj_filename,
verbose=False,
opset_version=opset_version,
input_names=["encoder_out"],
output_names=["projected_encoder_out"],
dynamic_axes={
"encoder_out": {0: "N"},
"projected_encoder_out": {0: "N"},
},
)
logging.info(f"Saved to {encoder_proj_filename}")
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model.decoder_proj,
decoder_out,
decoder_proj_filename,
verbose=False,
opset_version=opset_version,
input_names=["decoder_out"],
output_names=["projected_decoder_out"],
dynamic_axes={
"decoder_out": {0: "N"},
"projected_decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_proj_filename}")
def export_joiner_model_onnx_triton(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported model has two inputs:
- encoder_out: a tensor of shape (N, encoder_out_dim)
- decoder_out: a tensor of shape (N, decoder_out_dim)
and has one output:
- joiner_out: a tensor of shape (N, vocab_size)
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
joiner_model = TritonOnnxJoiner(joiner_model)
# Note: It uses torch.jit.trace() internally
torch.onnx.export(
joiner_model,
(encoder_out, decoder_out),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=["encoder_out", "decoder_out"],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
logging.info(f"Saved to {joiner_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
if params.onnx:
convert_scaled_to_non_scaled(model, inplace=True)
opset_version = 13
logging.info("Exporting to onnx format")
encoder_filename = params.exp_dir / "encoder.onnx"
export_encoder_model_onnx(
model.encoder,
encoder_filename,
opset_version=opset_version,
)
if not params.onnx_triton:
decoder_filename = params.exp_dir / "decoder.onnx"
export_decoder_model_onnx(
model.decoder,
decoder_filename,
opset_version=opset_version,
)
joiner_filename = params.exp_dir / "joiner.onnx"
export_joiner_model_onnx(
model.joiner,
joiner_filename,
opset_version=opset_version,
)
else:
decoder_filename = params.exp_dir / "decoder.onnx"
export_decoder_model_onnx_triton(
model.decoder,
decoder_filename,
opset_version=opset_version,
)
joiner_filename = params.exp_dir / "joiner.onnx"
export_joiner_model_onnx_triton(
model.joiner,
joiner_filename,
opset_version=opset_version,
)
if params.fp16:
try:
import onnxmltools
from onnxmltools.utils.float16_converter import convert_float_to_float16
except ImportError:
print("Please install onnxmltools!")
import sys
sys.exit(1)
def export_onnx_fp16(onnx_fp32_path, onnx_fp16_path):
onnx_fp32_model = onnxmltools.utils.load_model(onnx_fp32_path)
onnx_fp16_model = convert_float_to_float16(onnx_fp32_model)
onnxmltools.utils.save_model(onnx_fp16_model, onnx_fp16_path)
encoder_fp16_filename = params.exp_dir / "encoder_fp16.onnx"
export_onnx_fp16(encoder_filename, encoder_fp16_filename)
decoder_fp16_filename = params.exp_dir / "decoder_fp16.onnx"
export_onnx_fp16(decoder_filename, decoder_fp16_filename)
joiner_fp16_filename = params.exp_dir / "joiner_fp16.onnx"
export_onnx_fp16(joiner_filename, joiner_fp16_filename)
if not params.onnx_triton:
encoder_proj_filename = str(joiner_filename).replace(
".onnx", "_encoder_proj.onnx"
)
encoder_proj_fp16_filename = (
params.exp_dir / "joiner_encoder_proj_fp16.onnx"
)
export_onnx_fp16(encoder_proj_filename, encoder_proj_fp16_filename)
decoder_proj_filename = str(joiner_filename).replace(
".onnx", "_decoder_proj.onnx"
)
decoder_proj_fp16_filename = (
params.exp_dir / "joiner_decoder_proj_fp16.onnx"
)
export_onnx_fp16(decoder_proj_filename, decoder_proj_fp16_filename)
elif params.jit:
convert_scaled_to_non_scaled(model, inplace=True)
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
model.encoder.__class__.forward = model.encoder.__class__.streaming_forward
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torchscript. Export model.state_dict()")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,281 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) use the averaged model with checkpoint exp_dir/epoch-xxx.pt
./pruned_transducer_stateless7/generate_model_from_checkpoint.py \
--epoch 28 \
--avg 15 \
--use-averaged-model True \
--exp-dir ./pruned_transducer_stateless7/exp
It will generate a file `epoch-28-avg-15-use-averaged-model.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-28-avg-15-use-averaged-model.pt")`.
(2) use the averaged model with checkpoint exp_dir/checkpoint-iter.pt
./pruned_transducer_stateless7/generate_model_from_checkpoint.py \
--iter 22000 \
--avg 5 \
--use-averaged-model True \
--exp-dir ./pruned_transducer_stateless7/exp
It will generate a file `iter-22000-avg-5-use-averaged-model.pt` in the given `exp_dir`.
You can later load it by `torch.load("iter-22000-avg-5-use-averaged-model.pt")`.
(3) use the original model with checkpoint exp_dir/epoch-xxx.pt
./pruned_transducer_stateless7/generate_model_from_checkpoint.py \
--epoch 28 \
--avg 15 \
--use-averaged-model False \
--exp-dir ./pruned_transducer_stateless7/exp
It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-28-avg-15.pt")`.
(4) use the original model with checkpoint exp_dir/checkpoint-iter.pt
./pruned_transducer_stateless7/generate_model_from_checkpoint.py \
--iter 22000 \
--avg 5 \
--use-averaged-model False \
--exp-dir ./pruned_transducer_stateless7/exp
It will generate a file `iter-22000-avg-5.pt` in the given `exp_dir`.
You can later load it by `torch.load("iter-22000-avg-5.pt")`.
"""
import argparse
from pathlib import Path
from typing import Dict, List
import sentencepiece as spm
import torch
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model."
"If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
print("Script started")
device = torch.device("cpu")
print(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
print("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
print(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
print(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
print(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
filename = (
params.exp_dir
/ f"iter-{params.iter}-avg-{params.avg}-use-averaged-model.pt"
)
torch.save({"model": model.state_dict()}, filename)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
print(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
filename = (
params.exp_dir
/ f"epoch-{params.epoch}-avg-{params.avg}-use-averaged-model.pt"
)
torch.save({"model": model.state_dict()}, filename)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
print("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,278 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models, exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--jit 1
Usage of this script:
./pruned_transducer_stateless7_streaming/jit_pretrained.py \
--nn-model-filename ./pruned_transducer_stateless7_streaming/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
import math
from typing import List
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model-filename",
type=str,
required=True,
help="Path to the torchscript model cpu_jit.pt",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--decode-chunk-len",
type=int,
default=32,
help="The chunk size for decoding (in frames before subsampling)",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
model: torch.jit.ScriptModule,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
) -> List[List[int]]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (N, T, C)
encoder_out_lens:
A 1-D tensor of shape (N,).
Returns:
Return the decoded results for each utterance.
"""
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
device = encoder_out.device
blank_id = 0 # hard-code to 0
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
context_size = model.decoder.context_size
hyps = [[blank_id] * context_size for _ in range(N)]
decoder_input = torch.tensor(
hyps,
device=device,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.decoder(
decoder_input,
need_pad=torch.tensor([False]),
).squeeze(1)
offset = 0
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = packed_encoder_out.data[start:end]
current_encoder_out = current_encoder_out
# current_encoder_out's shape: (batch_size, encoder_out_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.joiner(
current_encoder_out,
decoder_out,
)
# logits'shape (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
hyps[i].append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(
decoder_input,
need_pad=torch.tensor([False]),
)
decoder_out = decoder_out.squeeze(1)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
device = torch.device("cpu")
logging.info(f"device: {device}")
model = torch.jit.load(args.nn_model_filename)
model.encoder.decode_chunk_size = args.decode_chunk_len // 2
model.eval()
model.to(device)
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=args.sound_files,
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features,
batch_first=True,
padding_value=math.log(1e-10),
)
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
x=features,
x_lens=feature_lengths,
)
hyps = greedy_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
s = "\n"
for filename, hyp in zip(args.sound_files, hyps):
words = sp.decode(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,313 @@
#!/usr/bin/env python3
"""
Usage:
./pruned_transducer_stateless7_streaming/jit_trace_export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
--decode-chunk-len 32
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import AttributeDict, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
add_model_arguments(parser)
return parser
def export_encoder_model_jit_trace(
encoder_model: torch.nn.Module,
encoder_filename: str,
params: AttributeDict,
) -> None:
"""Export the given encoder model with torch.jit.trace()
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
decode_chunk_len = params.decode_chunk_len # before subsampling
pad_length = 7
s = f"decode_chunk_len: {decode_chunk_len}"
logging.info(s)
assert encoder_model.decode_chunk_size == decode_chunk_len // 2, (
encoder_model.decode_chunk_size,
decode_chunk_len,
)
T = decode_chunk_len + pad_length
x = torch.zeros(1, T, 80, dtype=torch.float32)
x_lens = torch.full((1,), T, dtype=torch.int32)
states = encoder_model.get_init_state(device=x.device)
encoder_model.__class__.forward = encoder_model.__class__.streaming_forward
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
traced_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_trace(
decoder_model: torch.nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
traced_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_trace(
joiner_model: torch.nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
traced_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.trace()")
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename, params)
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,295 @@
#!/usr/bin/env python3
# flake8: noqa
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models exported by `torch.jit.trace()`
and uses them to decode waves.
You can use the following command to get the exported models:
./pruned_transducer_stateless7_streaming/jit_trace_export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
--decode-chunk-len 32
Usage of this script:
./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \
--encoder-model-filename ./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt \
--decoder-model-filename ./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt \
--joiner-model-filename ./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--decode-chunk-len 32 \
/path/to/foo.wav \
"""
import argparse
import logging
import math
from typing import List, Optional
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
from torch.nn.utils.rnn import pad_sequence
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder torchscript model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder torchscript model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner torchscript model. ",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--decode-chunk-len",
type=int,
default=32,
help="The chunk size for decoding (in frames before subsampling)",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
decoder: torch.jit.ScriptModule,
joiner: torch.jit.ScriptModule,
encoder_out: torch.Tensor,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
):
assert encoder_out.ndim == 2
context_size = 2
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor(hyp, dtype=torch.int32).unsqueeze(0)
# decoder_input.shape (1,, 1 context_size)
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
else:
assert decoder_out.ndim == 2
assert hyp is not None, hyp
T = encoder_out.size(0)
for i in range(T):
cur_encoder_out = encoder_out[i : i + 1]
joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor(decoder_input, dtype=torch.int32).unsqueeze(0)
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
return hyp, decoder_out
def create_streaming_feature_extractor(sample_rate) -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = sample_rate
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
device = torch.device("cpu")
logging.info(f"device: {device}")
encoder = torch.jit.load(args.encoder_model_filename)
decoder = torch.jit.load(args.decoder_model_filename)
joiner = torch.jit.load(args.joiner_model_filename)
encoder.eval()
decoder.eval()
joiner.eval()
encoder.to(device)
decoder.to(device)
joiner.to(device)
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model)
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor(args.sample_rate)
logging.info(f"Reading sound files: {args.sound_file}")
wave_samples = read_sound_files(
filenames=[args.sound_file],
expected_sample_rate=args.sample_rate,
)[0]
logging.info(wave_samples.shape)
logging.info("Decoding started")
chunk_length = args.decode_chunk_len
assert encoder.decode_chunk_size == chunk_length // 2, (
encoder.decode_chunk_size,
chunk_length,
)
# we subsample features with ((x_len - 7) // 2 + 1) // 2
pad_length = 7
T = chunk_length + pad_length
logging.info(f"chunk_length: {chunk_length}")
states = encoder.get_init_state(device)
tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32)
wave_samples = torch.cat([wave_samples, tail_padding])
chunk = int(0.25 * args.sample_rate) # 0.2 second
num_processed_frames = 0
hyp = None
decoder_out = None
start = 0
while start < wave_samples.numel():
logging.info(f"{start}/{wave_samples.numel()}")
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=args.sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= T:
frames = []
for i in range(T):
frames.append(online_fbank.get_frame(num_processed_frames + i))
frames = torch.cat(frames, dim=0).unsqueeze(0)
x_lens = torch.tensor([T], dtype=torch.int32)
encoder_out, out_lens, states = encoder(
x=frames,
x_lens=x_lens,
states=states,
)
num_processed_frames += chunk_length
hyp, decoder_out = greedy_search(
decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp
)
context_size = 2
logging.info(args.sound_file)
logging.info(sp.decode(hyp[context_size:]))
logging.info("Decoding Done")
torch.set_num_threads(4)
torch.set_num_interop_threads(1)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/joiner.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/model.py

View File

@ -0,0 +1,260 @@
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
"""
This script checks that exported ONNX models produce the same output
with the given torchscript model for the same input.
We use the pre-trained model from
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model via torch.jit.trace()
./pruned_transducer_stateless7_streaming/jit_trace_export.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--exp-dir $repo/exp/
It will generate the following 3 files inside $repo/exp
- encoder_jit_trace.pt
- decoder_jit_trace.pt
- joiner_jit_trace.pt
3. Export the model to ONNX
./pruned_transducer_stateless7_streaming/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--exp-dir $repo/exp/
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
4. Run this file
./pruned_transducer_stateless7_streaming/onnx_check.py \
--jit-encoder-filename $repo/exp/encoder_jit_trace.pt \
--jit-decoder-filename $repo/exp/decoder_jit_trace.pt \
--jit-joiner-filename $repo/exp/joiner_jit_trace.pt \
--onnx-encoder-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--onnx-decoder-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--onnx-joiner-filename $repo/exp/joiner-epoch-99-avg-1.onnx
"""
import argparse
import logging
import torch
from onnx_pretrained import OnnxModel
from zipformer import stack_states
from icefall import is_module_available
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--jit-encoder-filename",
required=True,
type=str,
help="Path to the torchscript encoder model",
)
parser.add_argument(
"--jit-decoder-filename",
required=True,
type=str,
help="Path to the torchscript decoder model",
)
parser.add_argument(
"--jit-joiner-filename",
required=True,
type=str,
help="Path to the torchscript joiner model",
)
parser.add_argument(
"--onnx-encoder-filename",
required=True,
type=str,
help="Path to the ONNX encoder model",
)
parser.add_argument(
"--onnx-decoder-filename",
required=True,
type=str,
help="Path to the ONNX decoder model",
)
parser.add_argument(
"--onnx-joiner-filename",
required=True,
type=str,
help="Path to the ONNX joiner model",
)
return parser
def test_encoder(
torch_encoder_model: torch.jit.ScriptModule,
torch_encoder_proj_model: torch.jit.ScriptModule,
onnx_model: OnnxModel,
):
N = torch.randint(1, 100, size=(1,)).item()
T = onnx_model.segment
C = 80
x_lens = torch.tensor([T] * N)
torch_states = [torch_encoder_model.get_init_state() for _ in range(N)]
torch_states = stack_states(torch_states)
onnx_model.init_encoder_states(N)
for i in range(5):
logging.info(f"test_encoder: iter {i}")
x = torch.rand(N, T, C)
torch_encoder_out, _, torch_states = torch_encoder_model(
x, x_lens, torch_states
)
torch_encoder_out = torch_encoder_proj_model(torch_encoder_out)
onnx_encoder_out = onnx_model.run_encoder(x)
assert torch.allclose(torch_encoder_out, onnx_encoder_out, atol=1e-4), (
(torch_encoder_out - onnx_encoder_out).abs().max()
)
def test_decoder(
torch_decoder_model: torch.jit.ScriptModule,
torch_decoder_proj_model: torch.jit.ScriptModule,
onnx_model: OnnxModel,
):
context_size = onnx_model.context_size
vocab_size = onnx_model.vocab_size
for i in range(10):
N = torch.randint(1, 100, size=(1,)).item()
logging.info(f"test_decoder: iter {i}, N={N}")
x = torch.randint(
low=1,
high=vocab_size,
size=(N, context_size),
dtype=torch.int64,
)
torch_decoder_out = torch_decoder_model(x, need_pad=torch.tensor([False]))
torch_decoder_out = torch_decoder_proj_model(torch_decoder_out)
torch_decoder_out = torch_decoder_out.squeeze(1)
onnx_decoder_out = onnx_model.run_decoder(x)
assert torch.allclose(torch_decoder_out, onnx_decoder_out, atol=1e-4), (
(torch_decoder_out - onnx_decoder_out).abs().max()
)
def test_joiner(
torch_joiner_model: torch.jit.ScriptModule,
onnx_model: OnnxModel,
):
encoder_dim = torch_joiner_model.encoder_proj.weight.shape[1]
decoder_dim = torch_joiner_model.decoder_proj.weight.shape[1]
for i in range(10):
N = torch.randint(1, 100, size=(1,)).item()
logging.info(f"test_joiner: iter {i}, N={N}")
encoder_out = torch.rand(N, encoder_dim)
decoder_out = torch.rand(N, decoder_dim)
projected_encoder_out = torch_joiner_model.encoder_proj(encoder_out)
projected_decoder_out = torch_joiner_model.decoder_proj(decoder_out)
torch_joiner_out = torch_joiner_model(encoder_out, decoder_out)
onnx_joiner_out = onnx_model.run_joiner(
projected_encoder_out, projected_decoder_out
)
assert torch.allclose(torch_joiner_out, onnx_joiner_out, atol=1e-4), (
(torch_joiner_out - onnx_joiner_out).abs().max()
)
@torch.no_grad()
def main():
args = get_parser().parse_args()
logging.info(vars(args))
torch_encoder_model = torch.jit.load(args.jit_encoder_filename)
torch_decoder_model = torch.jit.load(args.jit_decoder_filename)
torch_joiner_model = torch.jit.load(args.jit_joiner_filename)
onnx_model = OnnxModel(
encoder_model_filename=args.onnx_encoder_filename,
decoder_model_filename=args.onnx_decoder_filename,
joiner_model_filename=args.onnx_joiner_filename,
)
logging.info("Test encoder")
# When exporting the model to onnx, we have already put the encoder_proj
# inside the encoder.
test_encoder(torch_encoder_model, torch_joiner_model.encoder_proj, onnx_model)
logging.info("Test decoder")
# When exporting the model to onnx, we have already put the decoder_proj
# inside the decoder.
test_decoder(torch_decoder_model, torch_joiner_model.decoder_proj, onnx_model)
logging.info("Test joiner")
test_joiner(torch_joiner_model, onnx_model)
logging.info("Finished checking ONNX models")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
# See https://github.com/pytorch/pytorch/issues/38342
# and https://github.com/pytorch/pytorch/issues/33354
#
# If we don't do this, the delay increases whenever there is
# a new request that changes the actual batch size.
# If you use `py-spy dump --pid <server-pid> --native`, you will
# see a lot of time is spent in re-compiling the torch script model.
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
torch.manual_seed(20230207)
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,231 @@
from typing import Optional, Tuple
import torch
class OnnxStreamingEncoder(torch.nn.Module):
"""This class warps the streaming Zipformer to reduce the number of
state tensors for onnx.
https://github.com/k2-fsa/icefall/pull/831
"""
def __init__(self, encoder):
"""
Args:
encoder: An instance of Zipformer Class
"""
super().__init__()
self.model = encoder
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
len_cache: torch.tensor,
avg_cache: torch.tensor,
attn_cache: torch.tensor,
cnn_cache: torch.tensor,
) -> Tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
"""
Args:
x:
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
len_cache:
The cached numbers of past frames.
avg_cache:
The cached average tensors.
attn_cache:
The cached key tensors of the first attention modules.
The cached value tensors of the first attention modules.
The cached value tensors of the second attention modules.
cnn_cache:
The cached left contexts of the first convolution modules.
The cached left contexts of the second convolution modules.
Returns:
Return a tuple containing 2 tensors:
"""
num_encoder_layers = []
encoder_attention_dims = []
states = []
for i, encoder in enumerate(self.model.encoders):
num_encoder_layers.append(encoder.num_layers)
encoder_attention_dims.append(encoder.attention_dim)
len_cache = len_cache.transpose(0, 1) # sum(num_encoder_layers)==15, [15, B]
offset = 0
for num_layer in num_encoder_layers:
states.append(len_cache[offset : offset + num_layer])
offset += num_layer
avg_cache = avg_cache.transpose(0, 1) # [15, B, 384]
offset = 0
for num_layer in num_encoder_layers:
states.append(avg_cache[offset : offset + num_layer])
offset += num_layer
attn_cache = attn_cache.transpose(0, 2) # [15*3, 64, B, 192]
left_context_len = attn_cache.shape[1]
offset = 0
for i, num_layer in enumerate(num_encoder_layers):
ds = self.model.zipformer_downsampling_factors[i]
states.append(
attn_cache[offset : offset + num_layer, : left_context_len // ds]
)
offset += num_layer
for i, num_layer in enumerate(num_encoder_layers):
encoder_attention_dim = encoder_attention_dims[i]
ds = self.model.zipformer_downsampling_factors[i]
states.append(
attn_cache[
offset : offset + num_layer,
: left_context_len // ds,
:,
: encoder_attention_dim // 2,
]
)
offset += num_layer
for i, num_layer in enumerate(num_encoder_layers):
ds = self.model.zipformer_downsampling_factors[i]
states.append(
attn_cache[
offset : offset + num_layer,
: left_context_len // ds,
:,
: encoder_attention_dim // 2,
]
)
offset += num_layer
cnn_cache = cnn_cache.transpose(0, 1) # [30, B, 384, cnn_kernel-1]
offset = 0
for num_layer in num_encoder_layers:
states.append(cnn_cache[offset : offset + num_layer])
offset += num_layer
for num_layer in num_encoder_layers:
states.append(cnn_cache[offset : offset + num_layer])
offset += num_layer
encoder_out, encoder_out_lens, new_states = self.model.streaming_forward(
x=x,
x_lens=x_lens,
states=states,
)
new_len_cache = torch.cat(states[: self.model.num_encoders]).transpose(
0, 1
) # [B,15]
new_avg_cache = torch.cat(
states[self.model.num_encoders : 2 * self.model.num_encoders]
).transpose(
0, 1
) # [B,15,384]
new_cnn_cache = torch.cat(states[5 * self.model.num_encoders :]).transpose(
0, 1
) # [B,2*15,384,cnn_kernel-1]
assert len(set(encoder_attention_dims)) == 1
pad_tensors = [
torch.nn.functional.pad(
tensor,
(
0,
encoder_attention_dims[0] - tensor.shape[-1],
0,
0,
0,
left_context_len - tensor.shape[1],
0,
0,
),
)
for tensor in states[
2 * self.model.num_encoders : 5 * self.model.num_encoders
]
]
new_attn_cache = torch.cat(pad_tensors).transpose(0, 2) # [B,64,15*3,192]
return (
encoder_out,
encoder_out_lens,
new_len_cache,
new_avg_cache,
new_attn_cache,
new_cnn_cache,
)
class TritonOnnxDecoder(torch.nn.Module):
"""This class warps the Decoder in decoder.py
to remove the scalar input "need_pad".
Triton currently doesn't support scalar input.
https://github.com/triton-inference-server/server/issues/2333
"""
def __init__(
self,
decoder: torch.nn.Module,
):
"""
Args:
decoder: A instance of Decoder
"""
super().__init__()
self.model = decoder
def forward(self, y: torch.Tensor) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, U).
Returns:
Return a tensor of shape (N, U, decoder_dim).
"""
# False to not pad the input. Should be False during inference.
need_pad = False
return self.model(y, need_pad)
class TritonOnnxJoiner(torch.nn.Module):
"""This class warps the Joiner in joiner.py
to remove the scalar input "project_input".
Triton currently doesn't support scalar input.
https://github.com/triton-inference-server/server/issues/2333
"project_input" is set to True.
Triton solutions only need export joiner to a single joiner.onnx.
"""
def __init__(
self,
joiner: torch.nn.Module,
):
super().__init__()
self.model = joiner
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
Output from the encoder. Its shape is (N, T, s_range, C).
decoder_out:
Output from the decoder. Its shape is (N, T, s_range, C).
Returns:
Return a tensor of shape (N, T, s_range, C).
"""
# Apply input projections encoder_proj and decoder_proj.
project_input = True
return self.model(encoder_out, decoder_out, project_input)

View File

@ -0,0 +1,512 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This script loads ONNX models exported by ./export-onnx.py
and uses them to decode waves.
We use the pre-trained model from
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless7_streaming/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--exp-dir $repo/exp/
It will generate the following 3 files in $repo/exp
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
3. Run this file with the exported ONNX models
./pruned_transducer_stateless7_streaming/onnx_pretrained.py \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav
Note: Even though this script only supports decoding a single file,
the exported ONNX models do support batch processing.
"""
import argparse
import logging
from typing import Dict, List, Optional, Tuple
import k2
import numpy as np
import onnxruntime as ort
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt.""",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
class OnnxModel:
def __init__(
self,
encoder_model_filename: str,
decoder_model_filename: str,
joiner_model_filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.init_encoder(encoder_model_filename)
self.init_decoder(decoder_model_filename)
self.init_joiner(joiner_model_filename)
def init_encoder(self, encoder_model_filename: str):
self.encoder = ort.InferenceSession(
encoder_model_filename,
sess_options=self.session_opts,
)
self.init_encoder_states()
def init_encoder_states(self, batch_size: int = 1):
encoder_meta = self.encoder.get_modelmeta().custom_metadata_map
model_type = encoder_meta["model_type"]
assert model_type == "zipformer", model_type
decode_chunk_len = int(encoder_meta["decode_chunk_len"])
T = int(encoder_meta["T"])
num_encoder_layers = encoder_meta["num_encoder_layers"]
encoder_dims = encoder_meta["encoder_dims"]
attention_dims = encoder_meta["attention_dims"]
cnn_module_kernels = encoder_meta["cnn_module_kernels"]
left_context_len = encoder_meta["left_context_len"]
def to_int_list(s):
return list(map(int, s.split(",")))
num_encoder_layers = to_int_list(num_encoder_layers)
encoder_dims = to_int_list(encoder_dims)
attention_dims = to_int_list(attention_dims)
cnn_module_kernels = to_int_list(cnn_module_kernels)
left_context_len = to_int_list(left_context_len)
logging.info(f"decode_chunk_len: {decode_chunk_len}")
logging.info(f"T: {T}")
logging.info(f"num_encoder_layers: {num_encoder_layers}")
logging.info(f"encoder_dims: {encoder_dims}")
logging.info(f"attention_dims: {attention_dims}")
logging.info(f"cnn_module_kernels: {cnn_module_kernels}")
logging.info(f"left_context_len: {left_context_len}")
num_encoders = len(num_encoder_layers)
cached_len = []
cached_avg = []
cached_key = []
cached_val = []
cached_val2 = []
cached_conv1 = []
cached_conv2 = []
N = batch_size
for i in range(num_encoders):
cached_len.append(torch.zeros(num_encoder_layers[i], N, dtype=torch.int64))
cached_avg.append(torch.zeros(num_encoder_layers[i], N, encoder_dims[i]))
cached_key.append(
torch.zeros(
num_encoder_layers[i], left_context_len[i], N, attention_dims[i]
)
)
cached_val.append(
torch.zeros(
num_encoder_layers[i],
left_context_len[i],
N,
attention_dims[i] // 2,
)
)
cached_val2.append(
torch.zeros(
num_encoder_layers[i],
left_context_len[i],
N,
attention_dims[i] // 2,
)
)
cached_conv1.append(
torch.zeros(
num_encoder_layers[i], N, encoder_dims[i], cnn_module_kernels[i] - 1
)
)
cached_conv2.append(
torch.zeros(
num_encoder_layers[i], N, encoder_dims[i], cnn_module_kernels[i] - 1
)
)
self.cached_len = cached_len
self.cached_avg = cached_avg
self.cached_key = cached_key
self.cached_val = cached_val
self.cached_val2 = cached_val2
self.cached_conv1 = cached_conv1
self.cached_conv2 = cached_conv2
self.num_encoders = num_encoders
self.segment = T
self.offset = decode_chunk_len
def init_decoder(self, decoder_model_filename: str):
self.decoder = ort.InferenceSession(
decoder_model_filename,
sess_options=self.session_opts,
)
decoder_meta = self.decoder.get_modelmeta().custom_metadata_map
self.context_size = int(decoder_meta["context_size"])
self.vocab_size = int(decoder_meta["vocab_size"])
logging.info(f"context_size: {self.context_size}")
logging.info(f"vocab_size: {self.vocab_size}")
def init_joiner(self, joiner_model_filename: str):
self.joiner = ort.InferenceSession(
joiner_model_filename,
sess_options=self.session_opts,
)
joiner_meta = self.joiner.get_modelmeta().custom_metadata_map
self.joiner_dim = int(joiner_meta["joiner_dim"])
logging.info(f"joiner_dim: {self.joiner_dim}")
def _build_encoder_input_output(
self,
x: torch.Tensor,
) -> Tuple[Dict[str, np.ndarray], List[str]]:
encoder_input = {"x": x.numpy()}
encoder_output = ["encoder_out"]
def build_states_input(states: List[torch.Tensor], name: str):
for i, s in enumerate(states):
if isinstance(s, torch.Tensor):
encoder_input[f"{name}_{i}"] = s.numpy()
else:
encoder_input[f"{name}_{i}"] = s
encoder_output.append(f"new_{name}_{i}")
build_states_input(self.cached_len, "cached_len")
build_states_input(self.cached_avg, "cached_avg")
build_states_input(self.cached_key, "cached_key")
build_states_input(self.cached_val, "cached_val")
build_states_input(self.cached_val2, "cached_val2")
build_states_input(self.cached_conv1, "cached_conv1")
build_states_input(self.cached_conv2, "cached_conv2")
return encoder_input, encoder_output
def _update_states(self, states: List[np.ndarray]):
num_encoders = self.num_encoders
self.cached_len = states[num_encoders * 0 : num_encoders * 1]
self.cached_avg = states[num_encoders * 1 : num_encoders * 2]
self.cached_key = states[num_encoders * 2 : num_encoders * 3]
self.cached_val = states[num_encoders * 3 : num_encoders * 4]
self.cached_val2 = states[num_encoders * 4 : num_encoders * 5]
self.cached_conv1 = states[num_encoders * 5 : num_encoders * 6]
self.cached_conv2 = states[num_encoders * 6 : num_encoders * 7]
def run_encoder(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C)
Returns:
Return a 3-D tensor of shape (N, T', joiner_dim) where
T' is usually equal to ((T-7)//2+1)//2
"""
encoder_input, encoder_output_names = self._build_encoder_input_output(x)
out = self.encoder.run(encoder_output_names, encoder_input)
self._update_states(out[1:])
return torch.from_numpy(out[0])
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
"""
Args:
decoder_input:
A 2-D tensor of shape (N, context_size)
Returns:
Return a 2-D tensor of shape (N, joiner_dim)
"""
out = self.decoder.run(
[self.decoder.get_outputs()[0].name],
{self.decoder.get_inputs()[0].name: decoder_input.numpy()},
)[0]
return torch.from_numpy(out)
def run_joiner(
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
out = self.joiner.run(
[self.joiner.get_outputs()[0].name],
{
self.joiner.get_inputs()[0].name: encoder_out.numpy(),
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
},
)[0]
return torch.from_numpy(out)
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: OnnxModel,
encoder_out: torch.Tensor,
context_size: int,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
) -> List[int]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (1, T, joiner_dim)
context_size:
The context size of the decoder model.
decoder_out:
Optional. Decoder output of the previous chunk.
hyp:
Decoding results for previous chunks.
Returns:
Return the decoded results so far.
"""
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor([hyp], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
else:
assert hyp is not None, hyp
encoder_out = encoder_out.squeeze(0)
T = encoder_out.size(0)
for t in range(T):
cur_encoder_out = encoder_out[t : t + 1]
joiner_out = model.run_joiner(cur_encoder_out, decoder_out).squeeze(0)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
return hyp, decoder_out
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
model = OnnxModel(
encoder_model_filename=args.encoder_model_filename,
decoder_model_filename=args.decoder_model_filename,
joiner_model_filename=args.joiner_model_filename,
)
sample_rate = 16000
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {args.sound_file}")
waves = read_sound_files(
filenames=[args.sound_file],
expected_sample_rate=sample_rate,
)[0]
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
wave_samples = torch.cat([waves, tail_padding])
num_processed_frames = 0
segment = model.segment
offset = model.offset
context_size = model.context_size
hyp = None
decoder_out = None
chunk = int(1 * sample_rate) # 1 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
frames = frames.unsqueeze(0)
encoder_out = model.run_encoder(frames)
hyp, decoder_out = greedy_search(
model,
encoder_out,
context_size,
decoder_out,
hyp,
)
symbol_table = k2.SymbolTable.from_file(args.tokens)
text = ""
for i in hyp[context_size:]:
text += symbol_table[i]
text = text.replace("", " ").strip()
logging.info(args.sound_file)
logging.info(text)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/optim.py

View File

@ -0,0 +1,355 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
Usage of this script:
(1) greedy search
./pruned_transducer_stateless7_streaming/pretrained.py \
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) beam search
./pruned_transducer_stateless7_streaming/pretrained.py \
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless7_streaming/pretrained.py \
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./pruned_transducer_stateless7_streaming/pretrained.py \
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless7_streaming/exp/epoch-xx.pt`.
Note: ./pruned_transducer_stateless7_streaming/exp/pretrained.pt is generated by
./pruned_transducer_stateless7_streaming/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
model.device = device
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
num_waves = encoder_out.size(0)
hyps = []
msg = f"Using {params.method}"
if params.method == "beam_search":
msg += f" with beam size {params.beam_size}"
logging.info(msg)
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps.append(sp.decode(hyp).split())
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/scaling.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/scaling_converter.py

View File

@ -0,0 +1,419 @@
#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py \
--tokens ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/tokens.txt \
--encoder-param-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/joiner_jit_trace-pnnx.ncnn.bin \
./sherpa-ncnn-streaming-zipformer-en-2023-02-13/test_wavs/1089-134686-0001.wav
You can find pretrained models at
- English: https://huggingface.co/csukuangfj/sherpa-ncnn-streaming-zipformer-en-2023-02-13
- Bilingual (Chinese + English): https://huggingface.co/csukuangfj/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13
"""
import argparse
import logging
from typing import List, Optional, Tuple
import k2
import ncnn
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder-param-filename",
type=str,
help="Path to encoder.ncnn.param",
)
parser.add_argument(
"--encoder-bin-filename",
type=str,
help="Path to encoder.ncnn.bin",
)
parser.add_argument(
"--decoder-param-filename",
type=str,
help="Path to decoder.ncnn.param",
)
parser.add_argument(
"--decoder-bin-filename",
type=str,
help="Path to decoder.ncnn.bin",
)
parser.add_argument(
"--joiner-param-filename",
type=str,
help="Path to joiner.ncnn.param",
)
parser.add_argument(
"--joiner-bin-filename",
type=str,
help="Path to joiner.ncnn.bin",
)
parser.add_argument(
"sound_filename",
type=str,
help="Path to foo.wav",
)
return parser.parse_args()
def to_int_tuple(s: str):
return tuple(map(int, s.split(",")))
class Model:
def __init__(self, args):
self.init_encoder(args)
self.init_decoder(args)
self.init_joiner(args)
# Please change the parameters according to your model
self.num_encoder_layers = to_int_tuple("2,4,3,2,4")
self.encoder_dims = to_int_tuple("384,384,384,384,384") # also known as d_model
self.attention_dims = to_int_tuple("192,192,192,192,192")
self.zipformer_downsampling_factors = to_int_tuple("1,2,4,8,2")
self.cnn_module_kernels = to_int_tuple("31,31,31,31,31")
self.decode_chunk_size = 32 // 2
num_left_chunks = 4
self.left_context_length = self.decode_chunk_size * num_left_chunks # 64
self.chunk_length = self.decode_chunk_size * 2
pad_length = 7
self.T = self.chunk_length + pad_length
def get_init_states(self) -> List[torch.Tensor]:
cached_len_list = []
cached_avg_list = []
cached_key_list = []
cached_val_list = []
cached_val2_list = []
cached_conv1_list = []
cached_conv2_list = []
for i in range(len(self.num_encoder_layers)):
num_layers = self.num_encoder_layers[i]
ds = self.zipformer_downsampling_factors[i]
attention_dim = self.attention_dims[i]
left_context_length = self.left_context_length // ds
encoder_dim = self.encoder_dims[i]
cnn_module_kernel = self.cnn_module_kernels[i]
cached_len_list.append(torch.zeros(num_layers))
cached_avg_list.append(torch.zeros(num_layers, encoder_dim))
cached_key_list.append(
torch.zeros(num_layers, left_context_length, attention_dim)
)
cached_val_list.append(
torch.zeros(num_layers, left_context_length, attention_dim // 2)
)
cached_val2_list.append(
torch.zeros(num_layers, left_context_length, attention_dim // 2)
)
cached_conv1_list.append(
torch.zeros(num_layers, encoder_dim, cnn_module_kernel - 1)
)
cached_conv2_list.append(
torch.zeros(num_layers, encoder_dim, cnn_module_kernel - 1)
)
states = (
cached_len_list
+ cached_avg_list
+ cached_key_list
+ cached_val_list
+ cached_val2_list
+ cached_conv1_list
+ cached_conv2_list
)
return states
def init_encoder(self, args):
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
encoder_net.opt.num_threads = 4
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
encoder_net.load_param(encoder_param)
encoder_net.load_model(encoder_model)
self.encoder_net = encoder_net
def init_decoder(self, args):
decoder_param = args.decoder_param_filename
decoder_model = args.decoder_bin_filename
decoder_net = ncnn.Net()
decoder_net.opt.num_threads = 4
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
self.decoder_net = decoder_net
def init_joiner(self, args):
joiner_param = args.joiner_param_filename
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
joiner_net.opt.num_threads = 4
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
self.joiner_net = joiner_net
def run_encoder(
self,
x: torch.Tensor,
states: List[torch.Tensor],
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Args:
x:
A tensor of shape (T, C)
states:
A list of tensors. len(states) == self.num_layers * 4
Returns:
Return a tuple containing:
- encoder_out, a tensor of shape (T, encoder_dim).
- next_states, a list of tensors containing the next states
"""
with self.encoder_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(x.numpy()).clone())
for i in range(len(states)):
name = f"in{i+1}"
ex.input(name, ncnn.Mat(states[i].squeeze().numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
out_states: List[torch.Tensor] = []
for i in range(len(states)):
name = f"out{i+1}"
ret, ncnn_out_state = ex.extract(name)
assert ret == 0, ret
ncnn_out_state = torch.from_numpy(ncnn_out_state.numpy())
if i < len(self.num_encoder_layers):
# for cached_len, we need to discard the last dim
ncnn_out_state = ncnn_out_state.squeeze(1)
out_states.append(ncnn_out_state)
return encoder_out, out_states
def run_decoder(self, decoder_input):
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return decoder_out
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return joiner_out
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: Model,
encoder_out: torch.Tensor,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
):
context_size = 2
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
else:
assert decoder_out.ndim == 1
assert hyp is not None, hyp
T = encoder_out.size(0)
for t in range(T):
cur_encoder_out = encoder_out[t]
joiner_out = model.run_joiner(cur_encoder_out, decoder_out)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
return hyp, decoder_out
def main():
args = get_args()
logging.info(vars(args))
model = Model(args)
sound_file = args.sound_filename
sample_rate = 16000
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {sound_file}")
wave_samples = read_sound_files(
filenames=[sound_file],
expected_sample_rate=sample_rate,
)[0]
logging.info(wave_samples.shape)
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
wave_samples = torch.cat([wave_samples, tail_padding])
states = model.get_init_states()
logging.info(f"number of states: {len(states)}")
hyp = None
decoder_out = None
num_processed_frames = 0
segment = model.T
offset = model.chunk_length
chunk = int(1 * sample_rate) # 0.2 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
encoder_out, states = model.run_encoder(frames, states)
hyp, decoder_out = greedy_search(model, encoder_out, decoder_out, hyp)
symbol_table = k2.SymbolTable.from_file(args.tokens)
context_size = 2
text = ""
for i in hyp[context_size:]:
text += symbol_table[i]
text = text.replace("", " ").strip()
logging.info(sound_file)
logging.info(text)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py

View File

@ -0,0 +1,612 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./pruned_transducer_stateless7_streaming/streaming_decode.py \
--epoch 28 \
--avg 15 \
--decode-chunk-len 32 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--decoding_method greedy_search \
--num-decode-streams 2000
"""
import argparse
import logging
import math
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import numpy as np
import sentencepiece as spm
import torch
import torch.nn as nn
from commonvoice_fr import CommonVoiceAsrDataModule
from decode_stream import DecodeStream
from kaldifeat import Fbank, FbankOptions
from lhotse import CutSet
from streaming_beam_search import (
fast_beam_search_one_best,
greedy_search,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from zipformer import stack_states, unstack_states
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Supported decoding methods are:
greedy_search
modified_beam_search
fast_beam_search
""",
)
parser.add_argument(
"--num_active_paths",
type=int,
default=4,
help="""An interger indicating how many candidates we will keep for each
frame. Used only when --decoding-method is modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=32,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--num-decode-streams",
type=int,
default=2000,
help="The number of streams that can be decoded parallel.",
)
add_model_arguments(parser)
return parser
def decode_one_chunk(
params: AttributeDict,
model: nn.Module,
decode_streams: List[DecodeStream],
) -> List[int]:
"""Decode one chunk frames of features for each decode_streams and
return the indexes of finished streams in a List.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
decode_streams:
A List of DecodeStream, each belonging to a utterance.
Returns:
Return a List containing which DecodeStreams are finished.
"""
device = model.device
features = []
feature_lens = []
states = []
processed_lens = []
for stream in decode_streams:
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
features.append(feat)
feature_lens.append(feat_len)
states.append(stream.states)
processed_lens.append(stream.done_frames)
feature_lens = torch.tensor(feature_lens, device=device)
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
# factor in encoders is 8.
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
tail_length = 23
if features.size(1) < tail_length:
pad_length = tail_length - features.size(1)
feature_lens += pad_length
features = torch.nn.functional.pad(
features,
(0, 0, 0, pad_length),
mode="constant",
value=LOG_EPS,
)
states = stack_states(states)
processed_lens = torch.tensor(processed_lens, device=device)
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
x=features,
x_lens=feature_lens,
states=states,
)
encoder_out = model.joiner.encoder_proj(encoder_out)
if params.decoding_method == "greedy_search":
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
elif params.decoding_method == "fast_beam_search":
processed_lens = processed_lens + encoder_out_lens
fast_beam_search_one_best(
model=model,
encoder_out=encoder_out,
processed_lens=processed_lens,
streams=decode_streams,
beam=params.beam,
max_states=params.max_states,
max_contexts=params.max_contexts,
)
elif params.decoding_method == "modified_beam_search":
modified_beam_search(
model=model,
streams=decode_streams,
encoder_out=encoder_out,
num_active_paths=params.num_active_paths,
)
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
states = unstack_states(new_states)
finished_streams = []
for i in range(len(decode_streams)):
decode_streams[i].states = states[i]
decode_streams[i].done_frames += encoder_out_lens[i]
if decode_streams[i].done:
finished_streams.append(i)
return finished_streams
def decode_dataset(
cuts: CutSet,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
cuts:
Lhotse Cutset containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
device = model.device
opts = FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
log_interval = 50
decode_results = []
# Contain decode streams currently running.
decode_streams = []
idx = 0
for num, cut in enumerate(cuts):
# each utterance has a DecodeStream.
initial_states = model.encoder.get_init_state(device=device)
decode_stream = DecodeStream(
params=params,
cut_id=cut.id,
initial_states=initial_states,
decoding_graph=decoding_graph,
device=device,
)
audio: np.ndarray = cut.load_audio()
if audio.max() > 1 or audio.min() < -1:
audio = audio / max(abs(audio.max()), abs(audio.min()))
print(audio)
print(audio.max())
print(audio.min())
print(cut)
idx += 1
print(idx)
# audio.shape: (1, num_samples)
assert len(audio.shape) == 2
assert audio.shape[0] == 1, "Should be single channel"
assert audio.dtype == np.float32, audio.dtype
# The trained model is using normalized samples
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
samples = torch.from_numpy(audio).squeeze(0)
fbank = Fbank(opts)
feature = fbank(samples.to(device))
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
decode_stream.ground_truth = cut.supervisions[0].text
decode_streams.append(decode_stream)
while len(decode_streams) >= params.num_decode_streams:
finished_streams = decode_one_chunk(
params=params, model=model, decode_streams=decode_streams
)
for i in sorted(finished_streams, reverse=True):
decode_results.append(
(
decode_streams[i].id,
decode_streams[i].ground_truth.split(),
sp.decode(decode_streams[i].decoding_result()).split(),
)
)
del decode_streams[i]
if num % log_interval == 0:
logging.info(f"Cuts processed until now is {num}.")
# decode final chunks of last sequences
while len(decode_streams):
finished_streams = decode_one_chunk(
params=params, model=model, decode_streams=decode_streams
)
for i in sorted(finished_streams, reverse=True):
decode_results.append(
(
decode_streams[i].id,
decode_streams[i].ground_truth.split(),
sp.decode(decode_streams[i].decoding_result()).split(),
)
)
del decode_streams[i]
if params.decoding_method == "greedy_search":
key = "greedy_search"
elif params.decoding_method == "fast_beam_search":
key = (
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
)
elif params.decoding_method == "modified_beam_search":
key = f"num_active_paths_{params.num_active_paths}"
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
return {key: decode_results}
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
CommonVoiceAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
# for streaming
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
# for fast_beam_search
if params.decoding_method == "fast_beam_search":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
model.device = device
decoding_graph = None
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
commonvoice = CommonVoiceAsrDataModule(args)
test_cuts = commonvoice.test_cuts()
test_sets = "test-cv"
results_dict = decode_dataset(
cuts=test_cuts,
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_sets,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,150 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./pruned_transducer_stateless7_streaming/test_model.py
"""
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import get_params, get_transducer_model
def test_model():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = "2,4,3,2,4"
params.feedforward_dims = "1024,1024,2048,2048,1024"
params.nhead = "8,8,8,8,8"
params.encoder_dims = "384,384,384,384,384"
params.attention_dims = "192,192,192,192,192"
params.encoder_unmasked_dims = "256,256,256,256,256"
params.zipformer_downsampling_factors = "1,2,4,8,2"
params.cnn_module_kernels = "31,31,31,31,31"
params.decoder_dim = 512
params.joiner_dim = 512
params.num_left_chunks = 4
params.short_chunk_size = 50
params.decode_chunk_len = 32
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
# Test jit script
convert_scaled_to_non_scaled(model, inplace=True)
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
print("Using torch.jit.script")
model = torch.jit.script(model)
def test_model_jit_trace():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = "2,4,3,2,4"
params.feedforward_dims = "1024,1024,2048,2048,1024"
params.nhead = "8,8,8,8,8"
params.encoder_dims = "384,384,384,384,384"
params.attention_dims = "192,192,192,192,192"
params.encoder_unmasked_dims = "256,256,256,256,256"
params.zipformer_downsampling_factors = "1,2,4,8,2"
params.cnn_module_kernels = "31,31,31,31,31"
params.decoder_dim = 512
params.joiner_dim = 512
params.num_left_chunks = 4
params.short_chunk_size = 50
params.decode_chunk_len = 32
model = get_transducer_model(params)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
convert_scaled_to_non_scaled(model, inplace=True)
# Test encoder
def _test_encoder():
encoder = model.encoder
assert encoder.decode_chunk_size == params.decode_chunk_len // 2, (
encoder.decode_chunk_size,
params.decode_chunk_len,
)
T = params.decode_chunk_len + 7
x = torch.zeros(1, T, 80, dtype=torch.float32)
x_lens = torch.full((1,), T, dtype=torch.int32)
states = encoder.get_init_state(device=x.device)
encoder.__class__.forward = encoder.__class__.streaming_forward
traced_encoder = torch.jit.trace(encoder, (x, x_lens, states))
states1 = encoder.get_init_state(device=x.device)
states2 = traced_encoder.get_init_state(device=x.device)
for i in range(5):
x = torch.randn(1, T, 80, dtype=torch.float32)
x_lens = torch.full((1,), T, dtype=torch.int32)
y1, _, states1 = encoder.streaming_forward(x, x_lens, states1)
y2, _, states2 = traced_encoder(x, x_lens, states2)
assert torch.allclose(y1, y2, atol=1e-6), (i, (y1 - y2).abs().mean())
# Test decoder
def _test_decoder():
decoder = model.decoder
y = torch.zeros(10, decoder.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_decoder = torch.jit.trace(decoder, (y, need_pad))
d1 = decoder(y, need_pad)
d2 = traced_decoder(y, need_pad)
assert torch.equal(d1, d2), (d1 - d2).abs().mean()
# Test joiner
def _test_joiner():
joiner = model.joiner
encoder_out_dim = joiner.encoder_proj.weight.shape[1]
decoder_out_dim = joiner.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_joiner = torch.jit.trace(joiner, (encoder_out, decoder_out))
j1 = joiner(encoder_out, decoder_out)
j2 = traced_joiner(encoder_out, decoder_out)
assert torch.equal(j1, j2), (j1 - j2).abs().mean()
_test_encoder()
_test_decoder()
_test_joiner()
def main():
test_model()
test_model_jit_trace()
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -426,7 +426,6 @@ class NgramCounts:
if __name__ == "__main__":
ngram_counts = NgramCounts(args.ngram_order)
if args.text is None:
ngram_counts.add_raw_counts_from_standard_input()
else: