Update results for libri+giga multi dataset setup. (#363)

* Update results for libri+giga multi dataset setup.
This commit is contained in:
Fangjun Kuang 2022-05-14 21:45:39 +08:00 committed by GitHub
parent 2d7096dfc6
commit f23dd43719
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 451 additions and 67 deletions

View File

@ -0,0 +1,80 @@
#!/usr/bin/env bash
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained-iter-1224000-avg-14.pt pretrained.pt
popd
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
./pruned_transducer_stateless3/pretrained.py \
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
log "$method"
./pruned_transducer_stateless3/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p pruned_transducer_stateless3/exp
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless3/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh pruned_transducer_stateless3/exp
log "Decoding test-clean and test-other"
# use a small value for decoding with CPU
max_duration=100
for method in greedy_search fast_beam_search modified_beam_search; do
log "Decoding with $method"
./pruned_transducer_stateless3/decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--max-duration $max_duration \
--exp-dir pruned_transducer_stateless3/exp
done
rm pruned_transducer_stateless3/exp/*.pt
fi

View File

@ -142,8 +142,8 @@ jobs:
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified beam search===" echo "===modified beam search==="
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Display decoding results for pruned_transducer_stateless3 - name: Display decoding results for pruned_transducer_stateless3
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
@ -161,8 +161,8 @@ jobs:
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified beam search===" echo "===modified beam search==="
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2 find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2 find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for pruned_transducer_stateless2 - name: Upload decoding results for pruned_transducer_stateless2
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v2

View File

@ -0,0 +1,151 @@
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-librispeech-pruned-transducer-stateless3-2022-05-13
# stateless pruned transducer (reworked model) + giga speech
on:
push:
branches:
- master
pull_request:
types: [labeled]
schedule:
# minute (0-59)
# hour (0-23)
# day of the month (1-31)
# month (1-12)
# day of the week (0-6)
# nightly build at 15:50 UTC time every day
- cron: "50 15 * * *"
jobs:
run_librispeech_pruned_transducer_stateless3_2022_05_13:
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Cache LibriSpeech test-clean and test-other datasets
id: libri-test-clean-and-test-other-data
uses: actions/cache@v2
with:
path: |
~/tmp/download
key: cache-libri-test-clean-and-test-other
- name: Download LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
- name: Prepare manifests for LibriSpeech test-clean and test-other
shell: bash
run: |
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
- name: Cache LibriSpeech test-clean and test-other fbank features
id: libri-test-clean-and-test-other-fbank
uses: actions/cache@v2
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
mkdir -p egs/librispeech/ASR/data
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-05-13.sh
- name: Display decoding results for pruned_transducer_stateless3
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
shell: bash
run: |
cd egs/librispeech/ASR
tree pruned_transducer_stateless3/exp
cd pruned_transducer_stateless3/exp
echo "===greedy search==="
find greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===fast_beam_search==="
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified beam search==="
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for pruned_transducer_stateless3
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless3-2022-04-29
path: egs/librispeech/ASR/pruned_transducer_stateless3/exp/

View File

@ -107,7 +107,7 @@ We provide a Colab notebook to run a pre-trained transducer conformer + stateles
| | test-clean | test-other | | | test-clean | test-other |
|-----|------------|------------| |-----|------------|------------|
| WER | 2.19 | 4.97 | | WER | 2.00 | 4.63 |
### Aishell ### Aishell

View File

@ -1,6 +1,6 @@
## Results ## Results
### LibriSpeech BPE training results (Pruned Transducer 3) ### LibriSpeech BPE training results (Pruned Transducer 3, 2022-04-29)
[pruned_transducer_stateless3](./pruned_transducer_stateless3) [pruned_transducer_stateless3](./pruned_transducer_stateless3)
Same as `Pruned Transducer 2` but using the XL subset from Same as `Pruned Transducer 2` but using the XL subset from
@ -152,6 +152,67 @@ for epoch in 27; do
done done
``` ```
### LibriSpeech BPE training results (Pruned Transducer 3, 2022-05-13)
Same setup as [pruned_transducer_stateless3](./pruned_transducer_stateless3) (2022-04-29)
but change `--giga-prob` from 0.8 to 0.9. Also use `repeat` on gigaspeech XL
subset so that the gigaspeech dataloader never exhausts.
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|---------------------------------------------|
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
The training commands are:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./prepare.sh
./prepare_giga_speech.sh
./pruned_transducer_stateless3/train.py \
--world-size 8 \
--num-epochs 30 \
--start-epoch 0 \
--full-libri 1 \
--exp-dir pruned_transducer_stateless3/exp-0.9 \
--max-duration 300 \
--use-fp16 1 \
--lr-epochs 4 \
--num-workers 2 \
--giga-prob 0.9
```
The tensorboard log is available at
<https://tensorboard.dev/experiment/HpocR7dKS9KCQkJeYxfXug/>
Decoding commands:
```bash
for iter in 1224000; do
for avg in 14; do
for method in greedy_search modified_beam_search fast_beam_search ; do
./pruned_transducer_stateless3/decode.py \
--iter $iter \
--avg $avg \
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--beam 4 \
--max-contexts 32
done
done
done
```
The pretrained models, training logs, decoding logs, and decoding results
can be found at
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13>
### LibriSpeech BPE training results (Pruned Transducer 2) ### LibriSpeech BPE training results (Pruned Transducer 2)
[pruned_transducer_stateless2](./pruned_transducer_stateless2) [pruned_transducer_stateless2](./pruned_transducer_stateless2)

View File

@ -23,7 +23,7 @@ Usage:
--bpe-model ./data/lang_bpe_500/bpe.model \ --bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \ --method greedy_search \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(2) beam search (2) beam search
./pruned_transducer_stateless/pretrained.py \ ./pruned_transducer_stateless/pretrained.py \
@ -32,7 +32,7 @@ Usage:
--method beam_search \ --method beam_search \
--beam-size 4 \ --beam-size 4 \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(3) modified beam search (3) modified beam search
./pruned_transducer_stateless/pretrained.py \ ./pruned_transducer_stateless/pretrained.py \
@ -41,7 +41,7 @@ Usage:
--method modified_beam_search \ --method modified_beam_search \
--beam-size 4 \ --beam-size 4 \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(4) fast beam search (4) fast beam search
./pruned_transducer_stateless/pretrained.py \ ./pruned_transducer_stateless/pretrained.py \
@ -50,7 +50,7 @@ Usage:
--method fast_beam_search \ --method fast_beam_search \
--beam-size 4 \ --beam-size 4 \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`. You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
@ -233,6 +233,9 @@ def main():
logging.info("Creating model") logging.info("Creating model")
model = get_transducer_model(params) model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu") checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False) model.load_state_dict(checkpoint["model"], strict=False)
model.to(device) model.to(device)

View File

@ -23,16 +23,34 @@ Usage:
--bpe-model ./data/lang_bpe_500/bpe.model \ --bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \ --method greedy_search \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(1) beam search (2) beam search
./pruned_transducer_stateless2/pretrained.py \ ./pruned_transducer_stateless2/pretrained.py \
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \ --checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \ --bpe-model ./data/lang_bpe_500/bpe.model \
--method beam_search \ --method beam_search \
--beam-size 4 \ --beam-size 4 \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless2/pretrained.py \
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./pruned_transducer_stateless2/pretrained.py \
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless2/exp/epoch-xx.pt`. You can also use `./pruned_transducer_stateless2/exp/epoch-xx.pt`.
@ -79,9 +97,7 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--bpe-model", "--bpe-model",
type=str, type=str,
help="""Path to bpe.model. help="""Path to bpe.model.""",
Used only when method is ctc-decoding.
""",
) )
parser.add_argument( parser.add_argument(
@ -117,7 +133,33 @@ def get_parser():
"--beam-size", "--beam-size",
type=int, type=int,
default=4, default=4,
help="Used only when --method is beam_search and modified_beam_search", help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
) )
parser.add_argument( parser.add_argument(
@ -244,9 +286,9 @@ def main():
decoding_graph=decoding_graph, decoding_graph=decoding_graph,
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens, encoder_out_lens=encoder_out_lens,
beam=8.0, beam=params.beam,
max_contexts=32, max_contexts=params.max_contexts,
max_states=8, max_states=params.max_states,
) )
for hyp in sp.decode(hyp_tokens): for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split()) hyps.append(hyp.split())
@ -254,6 +296,7 @@ def main():
hyp_tokens = modified_beam_search( hyp_tokens = modified_beam_search(
model=model, model=model,
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size, beam=params.beam_size,
) )
@ -263,6 +306,7 @@ def main():
hyp_tokens = greedy_search_batch( hyp_tokens = greedy_search_batch(
model=model, model=model,
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
) )
for hyp in sp.decode(hyp_tokens): for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split()) hyps.append(hyp.split())

View File

@ -23,16 +23,34 @@ Usage:
--bpe-model ./data/lang_bpe_500/bpe.model \ --bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \ --method greedy_search \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(1) beam search (2) beam search
./pruned_transducer_stateless3/pretrained.py \ ./pruned_transducer_stateless3/pretrained.py \
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \ --checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \ --bpe-model ./data/lang_bpe_500/bpe.model \
--method beam_search \ --method beam_search \
--beam-size 4 \ --beam-size 4 \
/path/to/foo.wav \ /path/to/foo.wav \
/path/to/bar.wav \ /path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless3/pretrained.py \
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./pruned_transducer_stateless3/pretrained.py \
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless3/exp/epoch-xx.pt`. You can also use `./pruned_transducer_stateless3/exp/epoch-xx.pt`.
@ -79,9 +97,7 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--bpe-model", "--bpe-model",
type=str, type=str,
help="""Path to bpe.model. help="""Path to bpe.model.""",
Used only when method is ctc-decoding.
""",
) )
parser.add_argument( parser.add_argument(
@ -117,7 +133,33 @@ def get_parser():
"--beam-size", "--beam-size",
type=int, type=int,
default=4, default=4,
help="Used only when --method is beam_search and modified_beam_search", help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
) )
parser.add_argument( parser.add_argument(
@ -244,9 +286,9 @@ def main():
decoding_graph=decoding_graph, decoding_graph=decoding_graph,
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens, encoder_out_lens=encoder_out_lens,
beam=8.0, beam=params.beam,
max_contexts=32, max_contexts=params.max_contexts,
max_states=8, max_states=params.max_states,
) )
for hyp in sp.decode(hyp_tokens): for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split()) hyps.append(hyp.split())
@ -254,6 +296,7 @@ def main():
hyp_tokens = modified_beam_search( hyp_tokens = modified_beam_search(
model=model, model=model,
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size, beam=params.beam_size,
) )
@ -263,6 +306,7 @@ def main():
hyp_tokens = greedy_search_batch( hyp_tokens = greedy_search_batch(
model=model, model=model,
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
) )
for hyp in sp.decode(hyp_tokens): for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split()) hyps.append(hyp.split())

View File

@ -968,6 +968,7 @@ def run(rank, world_size, args):
train_giga_cuts = gigaspeech.train_S_cuts() train_giga_cuts = gigaspeech.train_S_cuts()
train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts) train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
train_giga_cuts = train_giga_cuts.repeat(times=None)
if args.enable_musan: if args.enable_musan:
cuts_musan = load_manifest( cuts_musan = load_manifest(