From f08b07d1528fd1e4c682e42b3840eea4bb69c28a Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Tue, 3 Jan 2023 14:04:01 +0900 Subject: [PATCH] from local --- .../.data2vec_audio.py.swp | Bin 45056 -> 45056 bytes .../.decode.py.swp | Bin 40960 -> 40960 bytes .../data2vec_audio.py | 4 ++-- 3 files changed, 2 insertions(+), 2 deletions(-) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 65980af0bd5c77cb10eed3f086da23b353817aee..ebb49b06a38f7cfb3a979917580aaa18f8faf74b 100644 GIT binary patch delta 364 zcmWN@Jxc-s0LS5f=UbaQiWae#d!@wq7VP(dCk*cdNJ zLkw__7S3^k5;n1pH7voxPeSVB0d*Xrhyv_{s+z^6Dc;b=G4_zghbi6S3NDf`@H{U) zp@|wixY)rqQh1L^7bsx`v#9in7j#g;Su`i@k{mK{VBs$!P4IlRbO{%I1G%M_xf&V@1&_uCa|}8maMo^4dxa(oZpnrk zq9H7TS{&Vs=nE7HJ;RUZsrDn)e&lAf9&1M>J22{w|1~LHVjEjX<0C0uqXHKeGWa&7 zXFTE@XV}Lsidez|rjdk+K|<=_7Bv*GiWOuM@->{0{_u(m>|hgFyc^O9j^H5;;bC05 z$1!{yz{5J$VBu{{Iz$mu7{;X+ba90W_TsLz!Q?Ry8zz2Z(hqvLLkFj*!9xiy?6BN; ciiWA#MI&f8t)SrK=<-N5=sI)ZOzSiC527hPJpcdz diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.decode.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.decode.py.swp index a03c5b4bb3815adbd2da1ab44b3c9794ffb2b3a5..9113d5f15272e15623379a2c7c6f951a3a99b6b0 100644 GIT binary patch delta 33 ncmZoTz|?SnNi4}A%+puFQqO<^2m}}yc5dFByd`6!*sJ*fq(chM delta 33 ncmZoTz|?SnNi4}A%+puFQqO<^2m}}y3RZ1S&J5lt_G&%=p6v=8 diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 51a681b65..02ed5bbff 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -41,9 +41,9 @@ class TransformerEncoderAdapter(TransformerEncoder): super().__init__(args) self.adapters = ResidualAdapterModule() - #for p in self.adapters.parameters(): + for p in self.adapters.parameters(): # p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) - # p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/50.) + p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/10.) def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(