diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/.train.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless5/.train.py.swp index 7d2e96212..9607aa4bd 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless5/.train.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless5/.train.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless5/train.py b/egs/librispeech/ASR/pruned_transducer_stateless5/train.py index 847c80ab0..567ceafa7 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless5/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless5/train.py @@ -1024,9 +1024,9 @@ def run(rank, world_size, args): # an utterance duration distribution for your dataset to select # the threshold if c.duration < 1.0 or c.duration > 20.0: - logging.warning( - f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" - ) + #logging.warning( + # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + #) return False # In pruned RNN-T, we require that T >= S @@ -1067,7 +1067,8 @@ def run(rank, world_size, args): valid_cuts = librispeech.dev_clean_cuts() valid_cuts += librispeech.dev_other_cuts() valid_dl = librispeech.valid_dataloaders(valid_cuts) - + + ''' if params.start_batch <= 0 and not params.print_diagnostics: scan_pessimistic_batches_for_oom( model=model, @@ -1077,6 +1078,7 @@ def run(rank, world_size, args): params=params, warmup=0.0 if params.start_epoch == 1 else 1.0, ) + ''' scaler = GradScaler(enabled=params.use_fp16) if checkpoints and "grad_scaler" in checkpoints: