Use the attention weights as input for the ModifiedSEModule

This commit is contained in:
Daniel Povey 2022-11-04 16:01:07 +08:00
parent 0d94783e76
commit efbe20694f

View File

@ -460,7 +460,7 @@ class ZipformerEncoderLayer(nn.Module):
# pooling module
if torch.jit.is_scripting() or use_self_attn:
src = src + self.squeeze_excite(src,
self_attn_output2[...,:self.squeeze_excite.bottleneck_dim])
attn_weights)
src = self.norm_final(self.balancer(src))
@ -1458,6 +1458,10 @@ class ModifiedSEModule(nn.Module):
self.in_proj = nn.Linear(d_model, d_model,
bias=False)
self.to_bottleneck_proj = ScaledLinear(d_model,
bottleneck_dim,
bias=False)
# Caution: this cannot work correctly with an extremeley small batch size, e.g. if
# we were training with a single very long audio sequence, or just 2 or 3 sequences
# at a time. We make max_factor small to reduce the harm this could cause
@ -1484,21 +1488,30 @@ class ModifiedSEModule(nn.Module):
grad_scale=0.01)
def forward(self,
x: Tensor,
bottleneck: Tensor):
attn_weights: Tensor):
"""
Args:
x: a Tensor of shape (T, N, C)
bottleneck: a Tensor of shape (1, N, bottleneck_dim) or (T, N, bottleneck_dim) that has
undergone some form of aggregation over time, e.g. attention.
attn_weights: a Tensor of shape (N * num_heads, seq_len, seq_len), we will only use the 1st head.
Returns:
a Tensor of shape (1, N, C)
a Tensor of shape (T, N, C)
"""
(T, N, d_model) = x.shape
num_heads = attn_weights.shape[0] // N
attn_weights = attn_weights.reshape(N, num_heads, T, T)
attn_weights = attn_weights[:,0] # (N, T, T)
bottleneck = self.to_bottleneck_proj(x) # (T, N, C)
bottleneck = bottleneck.transpose(0, 1) # (N, T, bottleneck_dim)
# (N, T, T) x (N, T, bottleneck_dim) -> (N, T, bottleneck_dim)
bottleneck = torch.bmm(attn_weights, bottleneck)
bottleneck = self.balancer(bottleneck)
bottleneck = self.activation(bottleneck)
bottleneck = bottleneck.transpose(0, 1) # (T, N, bottleneck_dim)
scales = self.from_bottleneck_proj(bottleneck)