diff --git a/egs/librispeech/ASR/incremental_transf/.train.py.swp b/egs/librispeech/ASR/incremental_transf/.train.py.swp index afab38765..21ccc1158 100644 Binary files a/egs/librispeech/ASR/incremental_transf/.train.py.swp and b/egs/librispeech/ASR/incremental_transf/.train.py.swp differ diff --git a/egs/librispeech/ASR/incremental_transf/train.py b/egs/librispeech/ASR/incremental_transf/train.py index 588c56091..4786bb6a0 100755 --- a/egs/librispeech/ASR/incremental_transf/train.py +++ b/egs/librispeech/ASR/incremental_transf/train.py @@ -977,7 +977,7 @@ def run(rank, world_size, args): for n, p in model.named_parameters(): if 'layer' not in n: try: p.data = pre_trained_model1[n] - except: print(f'pre-trained model has no parameter named {n}.') + except: print(f'1: pre-trained model has no parameter named {n}.') else: layer_name_splited = n.split('.') if int(layer_name_splited[3]) % 2 == 0: @@ -985,21 +985,19 @@ def run(rank, world_size, args): layer_name_splited[3] = str(int(layer_name_splited[3])//2) old_name = '.'.join(layer_name_splited) try: p.data = pre_trained_model2[old_name] - except: print(f'pre-trained model has no parameter named {n}.') + except: print(f'2: pre-trained model has no parameter named {n}.') else: layer_name_splited[0] = 'inter_encoder' layer_name_splited[3] = str(int(layer_name_splited[3])//2+1) old_name = '.'.join(layer_name_splited) try: p.data = pre_trained_model2[old_name] - except: print(f'pre-trained model has no parameter named {n}.') + except: print(f'3: pre-trained model has no parameter named {n}.') del pre_trained1 del pre_trained2 del pre_trained_model1 del pre_trained_model2 - - num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}")