mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Merge branch 'master' of github.com:marcoyang1998/icefall
This commit is contained in:
commit
ef63bfa516
@ -29,6 +29,9 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
|
|||||||
ls -lh data/fbank
|
ls -lh data/fbank
|
||||||
ls -lh pruned_transducer_stateless2/exp
|
ls -lh pruned_transducer_stateless2/exp
|
||||||
|
|
||||||
|
ln -s data/fbank/cuts_DEV.jsonl.gz data/fbank/gigaspeech_cuts_DEV.jsonl.gz
|
||||||
|
ln -s data/fbank/cuts_TEST.jsonl.gz data/fbank/gigaspeech_cuts_TEST.jsonl.gz
|
||||||
|
|
||||||
log "Decoding dev and test"
|
log "Decoding dev and test"
|
||||||
|
|
||||||
# use a small value for decoding with CPU
|
# use a small value for decoding with CPU
|
||||||
|
51
.github/scripts/run-multi-zh_hans-zipformer.sh
vendored
Executable file
51
.github/scripts/run-multi-zh_hans-zipformer.sh
vendored
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/multi_zh-hans/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
ln -s epoch-20.pt epoch-99.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint $repo/exp/epoch-99.pt \
|
||||||
|
--tokens $repo/data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method greedy_search \
|
||||||
|
$repo/test_wavs/DEV_T0000000000.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000001.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000002.wav
|
||||||
|
|
||||||
|
for method in modified_beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/epoch-99.pt \
|
||||||
|
--tokens $repo/data/lang_bpe_2000/tokens.txt \
|
||||||
|
$repo/test_wavs/DEV_T0000000000.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000001.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000002.wav
|
||||||
|
done
|
2
.github/workflows/run-aishell-2022-06-20.yml
vendored
2
.github/workflows/run-aishell-2022-06-20.yml
vendored
@ -45,7 +45,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
84
.github/workflows/run-multi-zh_hans-zipformer.yml
vendored
Normal file
84
.github/workflows/run-multi-zh_hans-zipformer.yml
vendored
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
# Copyright 2023 Xiaomi Corp. (author: Zengrui Jin)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-multi-zh_hans-zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_multi-zh_hans_zipformer-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_multi-zh_hans_zipformer:
|
||||||
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'multi-zh_hans'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf==3.20.*
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
sudo apt-get -qq install git-lfs tree
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-multi-zh_hans-zipformer.sh
|
@ -34,7 +34,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -43,7 +43,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -43,7 +43,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -43,7 +43,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.7, 3.8, 3.9]
|
python-version: [3.8]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
|
@ -338,7 +338,7 @@ We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder
|
|||||||
|
|
||||||
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
|
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
|
||||||
|
|
||||||
The best results for Chinese CER(%) and English WER(%) respectivly (zh: Chinese, en: English):
|
The best results for Chinese CER(%) and English WER(%) respectively (zh: Chinese, en: English):
|
||||||
|decoding-method | dev | dev_zh | dev_en | test | test_zh | test_en |
|
|decoding-method | dev | dev_zh | dev_en | test | test_zh | test_en |
|
||||||
|--|--|--|--|--|--|--|
|
|--|--|--|--|--|--|--|
|
||||||
|greedy_search| 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13|
|
|greedy_search| 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13|
|
||||||
|
@ -37,7 +37,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -291,8 +291,8 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -30,7 +30,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -278,8 +278,8 @@ class AishellAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -31,7 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
@ -299,8 +299,8 @@ class AiShell2AsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -30,7 +30,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 for AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 for AudioSamples
|
||||||
@ -310,8 +310,8 @@ class Aishell4AsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -37,7 +37,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -292,8 +292,8 @@ class AlimeetingAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -257,7 +257,7 @@ class AmiAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SimpleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
|
@ -30,7 +30,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
@ -311,8 +311,8 @@ class CommonVoiceAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -31,7 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
@ -339,8 +339,8 @@ class CSJAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -27,7 +27,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -264,8 +264,8 @@ class GigaSpeechAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -30,7 +30,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -297,8 +297,8 @@ class GigaSpeechAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -259,7 +259,7 @@ class LibriCssAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SimpleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
|
@ -1 +0,0 @@
|
|||||||
../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py
|
|
1576
egs/libricss/SURT/dprnn_zipformer/scaling.py
Normal file
1576
egs/libricss/SURT/dprnn_zipformer/scaling.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -79,7 +79,7 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|||||||
# ln -sfv /path/to/rirs_noises $dl_dir/
|
# ln -sfv /path/to/rirs_noises $dl_dir/
|
||||||
#
|
#
|
||||||
if [ ! -d $dl_dir/rirs_noises ]; then
|
if [ ! -d $dl_dir/rirs_noises ]; then
|
||||||
lhotse download rirs_noises $dl_dir
|
lhotse download rir-noise $dl_dir/rirs_noises
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
@ -89,6 +89,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|||||||
# to $dl_dir/librispeech. We perform text normalization for the transcripts.
|
# to $dl_dir/librispeech. We perform text normalization for the transcripts.
|
||||||
# NOTE: Alignments are required for this recipe.
|
# NOTE: Alignments are required for this recipe.
|
||||||
mkdir -p data/manifests
|
mkdir -p data/manifests
|
||||||
|
|
||||||
lhotse prepare librispeech -p train-clean-100 -p train-clean-360 -p train-other-500 -p dev-clean \
|
lhotse prepare librispeech -p train-clean-100 -p train-clean-360 -p train-other-500 -p dev-clean \
|
||||||
-j 4 --alignments-dir $dl_dir/libri_alignments/LibriSpeech $dl_dir/librispeech data/manifests/
|
-j 4 --alignments-dir $dl_dir/libri_alignments/LibriSpeech $dl_dir/librispeech data/manifests/
|
||||||
fi
|
fi
|
||||||
@ -112,7 +113,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|||||||
|
|
||||||
# We assume that you have downloaded the RIRS_NOISES corpus
|
# We assume that you have downloaded the RIRS_NOISES corpus
|
||||||
# to $dl_dir/rirs_noises
|
# to $dl_dir/rirs_noises
|
||||||
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises data/manifests
|
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises/RIRS_NOISES data/manifests
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
@ -31,7 +31,7 @@ from lhotse.dataset import (
|
|||||||
CutMix,
|
CutMix,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -290,8 +290,8 @@ class LibriSpeechAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -26,7 +26,7 @@ You can generate the checkpoint with the following command:
|
|||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
./pruned_transducer_stateless7/export.py \
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
--tokens data/lang_bpe_500/tokens.txt \
|
||||||
--epoch 30 \
|
--epoch 30 \
|
||||||
--avg 9
|
--avg 9
|
||||||
|
|
||||||
@ -52,12 +52,12 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from alignment import batch_force_alignment
|
from alignment import batch_force_alignment
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
|
||||||
|
|
||||||
from icefall.utils import AttributeDict, convert_timestamp, parse_timestamp
|
|
||||||
from lhotse import CutSet
|
from lhotse import CutSet
|
||||||
from lhotse.serialization import SequentialJsonlWriter
|
from lhotse.serialization import SequentialJsonlWriter
|
||||||
from lhotse.supervision import AlignmentItem
|
from lhotse.supervision import AlignmentItem
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.utils import AttributeDict, convert_timestamp, parse_timestamp
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
|
@ -71,6 +71,10 @@ class Decoder(nn.Module):
|
|||||||
groups=decoder_dim // 4, # group size == 4
|
groups=decoder_dim // 4, # group size == 4
|
||||||
bias=False,
|
bias=False,
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
# To avoid `RuntimeError: Module 'Decoder' has no attribute 'conv'`
|
||||||
|
# when inference with torch.jit.script and context_size == 1
|
||||||
|
self.conv = nn.Identity()
|
||||||
|
|
||||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
|
@ -30,7 +30,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -297,8 +297,8 @@ class GigaSpeechAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -31,7 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
@ -314,8 +314,8 @@ class LibriSpeechAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -17,7 +17,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -270,8 +270,8 @@ class MGB2AsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
39
egs/multi_zh-hans/ASR/README.md
Normal file
39
egs/multi_zh-hans/ASR/README.md
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
|
||||||
|
# Introduction
|
||||||
|
|
||||||
|
This recipe includes scripts for training Zipformer model using multiple Chinese datasets.
|
||||||
|
|
||||||
|
# Included Training Sets
|
||||||
|
1. THCHS-30
|
||||||
|
2. AiShell-{1,2,4}
|
||||||
|
3. ST-CMDS
|
||||||
|
4. Primewords
|
||||||
|
5. MagicData
|
||||||
|
6. Aidatatang_200zh
|
||||||
|
7. AliMeeting
|
||||||
|
8. WeNetSpeech
|
||||||
|
9. KeSpeech-ASR
|
||||||
|
|
||||||
|
|Datset| Number of hours| URL|
|
||||||
|
|---|---:|---|
|
||||||
|
|**TOTAL**|14,106|---|
|
||||||
|
|THCHS-30|35|https://www.openslr.org/18/|
|
||||||
|
|AiShell-1|170|https://www.openslr.org/33/|
|
||||||
|
|AiShell-2|1,000|http://www.aishelltech.com/aishell_2|
|
||||||
|
|AiShell-4|120|https://www.openslr.org/111/|
|
||||||
|
|ST-CMDS|110|https://www.openslr.org/38/|
|
||||||
|
|Primewords|99|https://www.openslr.org/47/|
|
||||||
|
|aidatatang_200zh|200|https://www.openslr.org/62/|
|
||||||
|
|MagicData|755|https://www.openslr.org/68/|
|
||||||
|
|AliMeeting|100|https://openslr.org/119/|
|
||||||
|
|WeNetSpeech|10,000|https://github.com/wenet-e2e/WenetSpeech|
|
||||||
|
|KeSpeech|1,542|https://github.com/KeSpeech/KeSpeech|
|
||||||
|
|
||||||
|
|
||||||
|
# Included Test Sets
|
||||||
|
1. Aishell-{1,2,4}
|
||||||
|
2. Aidatatang_200zh
|
||||||
|
3. AliMeeting
|
||||||
|
4. MagicData
|
||||||
|
5. KeSpeech-ASR
|
||||||
|
6. WeNetSpeech
|
38
egs/multi_zh-hans/ASR/RESULTS.md
Normal file
38
egs/multi_zh-hans/ASR/RESULTS.md
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
## Results
|
||||||
|
|
||||||
|
### Multi Chinese datasets char-based training results (Non-streaming) on zipformer model
|
||||||
|
|
||||||
|
This is the [pull request #1238](https://github.com/k2-fsa/icefall/pull/1238) in icefall.
|
||||||
|
|
||||||
|
#### Non-streaming
|
||||||
|
|
||||||
|
Best results (num of params : ~69M):
|
||||||
|
|
||||||
|
The training command:
|
||||||
|
|
||||||
|
```
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 20 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--num-workers 8
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command:
|
||||||
|
|
||||||
|
```
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1
|
||||||
|
```
|
||||||
|
|
||||||
|
Character Error Rates (CERs) listed below are produced by the checkpoint of the 20th epoch using greedy search and BPE model ( # tokens is 2000, byte fallback enabled).
|
||||||
|
|
||||||
|
| Datasets | aidatatang _200zh | aidatatang _200zh | alimeeting | alimeeting | aishell-1 | aishell-1 | aishell-2 | aishell-2 | aishell-4 | magicdata | magicdata | kespeech-asr | kespeech-asr | kespeech-asr | WenetSpeech | WenetSpeech | WenetSpeech |
|
||||||
|
|--------------------------------|------------------------------|-------------|-------------------|--------------|----------------|-------------|------------------|-------------|------------------|------------------|-------------|-----------------------|-----------------------|-------------|--------------------|-------------------------|---------------------|
|
||||||
|
| Zipformer CER (%) | dev | test | eval | test | dev | test | dev | test | test | dev | test | dev phase1 | dev phase2 | test | dev | test meeting | test net |
|
||||||
|
| | 3.2 | 3.67 | 23.15 | 24.78 | 2.91 | 3.04 | 3.59 | 4.03 | 15.68 | 3.68 | 3.12 | 6.69 | 3.19 | 8.01 | 9.32 | 7.05 | 8.78 |
|
||||||
|
|
||||||
|
|
||||||
|
The pre-trained model is available here : https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2
|
37
egs/multi_zh-hans/ASR/local/bpe_model_to_tokens.py
Executable file
37
egs/multi_zh-hans/ASR/local/bpe_model_to_tokens.py
Executable file
@ -0,0 +1,37 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes `bpe.model` as input and generates a file `tokens.txt`
|
||||||
|
from it.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
./bpe_model_to_tokens.py /path/to/input/bpe.model > tokens.txt
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"bpe_model",
|
||||||
|
type=str,
|
||||||
|
help="Path to the input bpe.model",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(args.bpe_model)
|
||||||
|
|
||||||
|
for i in range(sp.vocab_size()):
|
||||||
|
print(sp.id_to_piece(i), i)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/local/compile_lg.py
Symbolic link
1
egs/multi_zh-hans/ASR/local/compile_lg.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compile_lg.py
|
93
egs/multi_zh-hans/ASR/local/compute_fbank_kespeech_dev_test.py
Executable file
93
egs/multi_zh-hans/ASR/local/compute_fbank_kespeech_dev_test.py
Executable file
@ -0,0 +1,93 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_kespeech_dev_test():
|
||||||
|
in_out_dir = Path("data/fbank/kespeech")
|
||||||
|
# number of workers in dataloader
|
||||||
|
num_workers = 42
|
||||||
|
|
||||||
|
# number of seconds in a batch
|
||||||
|
batch_duration = 600
|
||||||
|
|
||||||
|
subsets = (
|
||||||
|
"dev_phase1",
|
||||||
|
"dev_phase2",
|
||||||
|
"test",
|
||||||
|
)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
for partition in subsets:
|
||||||
|
cuts_path = in_out_dir / f"kespeech-asr_cuts_{partition}.jsonl.gz"
|
||||||
|
if cuts_path.is_file():
|
||||||
|
logging.info(f"{cuts_path} exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
raw_cuts_path = in_out_dir / f"kespeech-asr_cuts_{partition}_raw.jsonl.gz"
|
||||||
|
|
||||||
|
logging.info(f"Loading {raw_cuts_path}")
|
||||||
|
cut_set = CutSet.from_file(raw_cuts_path)
|
||||||
|
|
||||||
|
logging.info("Splitting cuts into smaller chunks")
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Computing features")
|
||||||
|
cut_set = cut_set.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{in_out_dir}/feats_{partition}",
|
||||||
|
num_workers=num_workers,
|
||||||
|
batch_duration=batch_duration,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
overwrite=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Saving to {cuts_path}")
|
||||||
|
cut_set.to_file(cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
compute_fbank_kespeech_dev_test()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
180
egs/multi_zh-hans/ASR/local/compute_fbank_kespeech_splits.py
Executable file
180
egs/multi_zh-hans/ASR/local/compute_fbank_kespeech_splits.py
Executable file
@ -0,0 +1,180 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import (
|
||||||
|
CutSet,
|
||||||
|
KaldifeatFbank,
|
||||||
|
KaldifeatFbankConfig,
|
||||||
|
LilcomChunkyWriter,
|
||||||
|
set_audio_duration_mismatch_tolerance,
|
||||||
|
set_caching_enabled,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--training-subset",
|
||||||
|
type=str,
|
||||||
|
default="train_phase1",
|
||||||
|
choices=["train_phase1", "train_phase2"],
|
||||||
|
help="The training subset for computing fbank feature.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of dataloading workers used for reading the audio.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-duration",
|
||||||
|
type=float,
|
||||||
|
default=600.0,
|
||||||
|
help="The maximum number of audio seconds in a batch."
|
||||||
|
"Determines batch size dynamically.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-splits",
|
||||||
|
type=int,
|
||||||
|
required=True,
|
||||||
|
help="The number of splits of the given subset",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Process pieces starting from this number (inclusive).",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--stop",
|
||||||
|
type=int,
|
||||||
|
default=-1,
|
||||||
|
help="Stop processing pieces until this number (exclusive).",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_kespeech_splits(args):
|
||||||
|
subset = args.training_subset
|
||||||
|
subset = str(subset)
|
||||||
|
num_splits = args.num_splits
|
||||||
|
output_dir = f"data/fbank/kespeech/{subset}_split_{num_splits}"
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
assert output_dir.exists(), f"{output_dir} does not exist!"
|
||||||
|
|
||||||
|
num_digits = len(str(num_splits))
|
||||||
|
|
||||||
|
start = args.start
|
||||||
|
stop = args.stop
|
||||||
|
if stop < start:
|
||||||
|
stop = num_splits
|
||||||
|
|
||||||
|
stop = min(stop, num_splits)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
|
||||||
|
set_caching_enabled(False)
|
||||||
|
for i in range(start, stop):
|
||||||
|
idx = f"{i + 1}".zfill(num_digits)
|
||||||
|
logging.info(f"Processing {idx}/{num_splits}")
|
||||||
|
|
||||||
|
cuts_path = output_dir / f"kespeech-asr_cuts_{subset}.{idx}.jsonl.gz"
|
||||||
|
if cuts_path.is_file():
|
||||||
|
logging.info(f"{cuts_path} exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
raw_cuts_path = output_dir / f"kespeech-asr_cuts_{subset}_raw.{idx}.jsonl.gz"
|
||||||
|
|
||||||
|
logging.info(f"Loading {raw_cuts_path}")
|
||||||
|
cut_set = CutSet.from_file(raw_cuts_path)
|
||||||
|
|
||||||
|
logging.info("Splitting cuts into smaller chunks.")
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Computing features")
|
||||||
|
cut_set = cut_set.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/feats_{subset}_{idx}",
|
||||||
|
num_workers=args.num_workers,
|
||||||
|
batch_duration=args.batch_duration,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
overwrite=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Saving to {cuts_path}")
|
||||||
|
cut_set.to_file(cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
now = datetime.now()
|
||||||
|
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
||||||
|
|
||||||
|
log_filename = "log-compute_fbank_kespeech_splits"
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
log_filename = f"{log_filename}-{date_time}"
|
||||||
|
|
||||||
|
logging.basicConfig(
|
||||||
|
filename=log_filename,
|
||||||
|
format=formatter,
|
||||||
|
level=logging.INFO,
|
||||||
|
filemode="w",
|
||||||
|
)
|
||||||
|
|
||||||
|
console = logging.StreamHandler()
|
||||||
|
console.setLevel(logging.INFO)
|
||||||
|
console.setFormatter(logging.Formatter(formatter))
|
||||||
|
logging.getLogger("").addHandler(console)
|
||||||
|
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
compute_fbank_kespeech_splits(args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
122
egs/multi_zh-hans/ASR/local/compute_fbank_magicdata.py
Executable file
122
egs/multi_zh-hans/ASR/local/compute_fbank_magicdata.py
Executable file
@ -0,0 +1,122 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the MagicData dataset.
|
||||||
|
It looks for manifests in the directory data/manifests/magicdata.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_magicdata(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||||
|
src_dir = Path("data/manifests/magicdata")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(30, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = ("train", "test", "dev")
|
||||||
|
prefix = "magicdata"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition and speed_perturb:
|
||||||
|
cut_set = (
|
||||||
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--speed-perturb",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_magicdata(
|
||||||
|
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||||
|
)
|
122
egs/multi_zh-hans/ASR/local/compute_fbank_primewords.py
Executable file
122
egs/multi_zh-hans/ASR/local/compute_fbank_primewords.py
Executable file
@ -0,0 +1,122 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the Primewords dataset.
|
||||||
|
It looks for manifests in the directory data/manifests/primewords.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_primewords(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||||
|
src_dir = Path("data/manifests/primewords")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = ("train",)
|
||||||
|
prefix = "primewords"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition and speed_perturb:
|
||||||
|
cut_set = (
|
||||||
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--speed-perturb",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_primewords(
|
||||||
|
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||||
|
)
|
121
egs/multi_zh-hans/ASR/local/compute_fbank_stcmds.py
Executable file
121
egs/multi_zh-hans/ASR/local/compute_fbank_stcmds.py
Executable file
@ -0,0 +1,121 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the ST-CMDS dataset.
|
||||||
|
It looks for manifests in the directory data/manifests/stcmds.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_stcmds(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||||
|
src_dir = Path("data/manifests/stcmds")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = ("train",)
|
||||||
|
prefix = "stcmds"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition and speed_perturb:
|
||||||
|
cut_set = (
|
||||||
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--speed-perturb",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_stcmds(
|
||||||
|
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||||
|
)
|
127
egs/multi_zh-hans/ASR/local/compute_fbank_thchs30.py
Executable file
127
egs/multi_zh-hans/ASR/local/compute_fbank_thchs30.py
Executable file
@ -0,0 +1,127 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the THCHS-30 dataset.
|
||||||
|
It looks for manifests in the directory data/manifests/thchs30.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_thchs30(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||||
|
src_dir = Path("data/manifests/thchs30")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"train",
|
||||||
|
"dev",
|
||||||
|
"test",
|
||||||
|
)
|
||||||
|
prefix = "thchs_30"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition:
|
||||||
|
cut_set = (
|
||||||
|
(cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1))
|
||||||
|
if speed_perturb
|
||||||
|
else cut_set
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--speed-perturb",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_thchs30(
|
||||||
|
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||||
|
)
|
1
egs/multi_zh-hans/ASR/local/prepare_char.py
Symbolic link
1
egs/multi_zh-hans/ASR/local/prepare_char.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../wenetspeech/ASR/local/prepare_char.py
|
65
egs/multi_zh-hans/ASR/local/prepare_for_bpe_model.py
Executable file
65
egs/multi_zh-hans/ASR/local/prepare_for_bpe_model.py
Executable file
@ -0,0 +1,65 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script tokenizes the training transcript by CJK characters
|
||||||
|
# and saves the result to transcript_chars.txt, which is used
|
||||||
|
# to train the BPE model later.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
from icefall.utils import tokenize_by_CJK_char
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Output directory.
|
||||||
|
The generated transcript_chars.txt is saved to this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--text",
|
||||||
|
type=str,
|
||||||
|
help="WenetSpeech training transcript.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
text = Path(args.text)
|
||||||
|
|
||||||
|
assert lang_dir.exists() and text.exists(), f"{lang_dir} or {text} does not exist!"
|
||||||
|
|
||||||
|
transcript_path = lang_dir / "transcript_chars.txt"
|
||||||
|
|
||||||
|
with open(text, "r", encoding="utf-8") as fin:
|
||||||
|
with open(transcript_path, "w+", encoding="utf-8") as fout:
|
||||||
|
for line in fin:
|
||||||
|
fout.write(tokenize_by_CJK_char(line) + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/local/prepare_lang.py
Symbolic link
1
egs/multi_zh-hans/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang.py
|
1
egs/multi_zh-hans/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/multi_zh-hans/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
151
egs/multi_zh-hans/ASR/local/preprocess_kespeech.py
Executable file
151
egs/multi_zh-hans/ASR/local/preprocess_kespeech.py
Executable file
@ -0,0 +1,151 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
# Copyright 2023 Xiaomi Corp. (Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, SupervisionSegment
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall import setup_logger
|
||||||
|
|
||||||
|
# Similar text filtering and normalization procedure as in:
|
||||||
|
# https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_text(
|
||||||
|
utt: str,
|
||||||
|
punct_pattern=re.compile(r"<(PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||||
|
whitespace_pattern=re.compile(r"\s\s+"),
|
||||||
|
) -> str:
|
||||||
|
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
|
||||||
|
|
||||||
|
|
||||||
|
def has_no_oov(
|
||||||
|
sup: SupervisionSegment,
|
||||||
|
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER|SPOKEN_NOISE)>"),
|
||||||
|
) -> bool:
|
||||||
|
return oov_pattern.search(sup.text) is None
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess_kespeech(speed_perturb: bool = False):
|
||||||
|
src_dir = Path("data/manifests/kespeech")
|
||||||
|
output_dir = Path("data/fbank/kespeech")
|
||||||
|
output_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
# Note: By default, we preprocess all sub-parts.
|
||||||
|
# You can delete those that you don't need.
|
||||||
|
# For instance, if you don't want to use the test subpart, just remove
|
||||||
|
# the line below containing "test"
|
||||||
|
dataset_parts = (
|
||||||
|
"dev_phase1",
|
||||||
|
"dev_phase2",
|
||||||
|
"test",
|
||||||
|
"train_phase1",
|
||||||
|
"train_phase2",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Loading manifest (may take 10 minutes)")
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
suffix="jsonl.gz",
|
||||||
|
prefix="kespeech-asr",
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
logging_threshold = 50
|
||||||
|
logging_count = 0
|
||||||
|
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
raw_cuts_path = output_dir / f"kespeech-asr_cuts_{partition}_raw.jsonl.gz"
|
||||||
|
if raw_cuts_path.is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Note this step makes the recipe different than LibriSpeech:
|
||||||
|
# We must filter out some utterances and remove punctuation
|
||||||
|
# to be consistent with Kaldi.
|
||||||
|
logging.info("Filtering OOV utterances from supervisions")
|
||||||
|
m["supervisions"] = m["supervisions"].filter(has_no_oov)
|
||||||
|
logging.info(f"Normalizing text in {partition}")
|
||||||
|
for sup in m["supervisions"]:
|
||||||
|
orig_text = sup.text
|
||||||
|
sup.text = normalize_text(sup.text)
|
||||||
|
if logging_count < logging_threshold and len(orig_text) != len(sup.text):
|
||||||
|
logging_count += 1
|
||||||
|
logging.info(
|
||||||
|
f"\nOriginal text vs normalized text:\n{orig_text}\n{sup.text}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create long-recording cut manifests.
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
# Run data augmentation that needs to be done in the
|
||||||
|
# time domain.
|
||||||
|
if partition not in [
|
||||||
|
"dev_phase1",
|
||||||
|
"dev_phase2",
|
||||||
|
"test",
|
||||||
|
]:
|
||||||
|
if speed_perturb:
|
||||||
|
logging.info(
|
||||||
|
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
|
||||||
|
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
|
||||||
|
)
|
||||||
|
cut_set = (
|
||||||
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
logging.info(f"Saving to {raw_cuts_path}")
|
||||||
|
cut_set.to_file(raw_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--speed-perturb",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
setup_logger(log_filename="./log-preprocess-kespeech")
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
preprocess_kespeech(speed_perturb=args.speed_perturb)
|
||||||
|
logging.info("Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/local/text2token.py
Symbolic link
1
egs/multi_zh-hans/ASR/local/text2token.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../wenetspeech/ASR/local/text2token.py
|
109
egs/multi_zh-hans/ASR/local/train_bpe_model.py
Executable file
109
egs/multi_zh-hans/ASR/local/train_bpe_model.py
Executable file
@ -0,0 +1,109 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
# You can install sentencepiece via:
|
||||||
|
#
|
||||||
|
# pip install sentencepiece
|
||||||
|
#
|
||||||
|
# Due to an issue reported in
|
||||||
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||||
|
#
|
||||||
|
# Please install a version >=0.1.96
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import shutil
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
The generated bpe.model is saved to this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--transcript",
|
||||||
|
type=str,
|
||||||
|
help="Training transcript.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size",
|
||||||
|
type=int,
|
||||||
|
help="Vocabulary size for BPE training",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--byte-fallback",
|
||||||
|
type=bool,
|
||||||
|
default=True,
|
||||||
|
help="Enable byte fallback for BPE model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
vocab_size = args.vocab_size
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
model_type = "unigram"
|
||||||
|
|
||||||
|
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||||
|
train_text = args.transcript
|
||||||
|
character_coverage = 0.98
|
||||||
|
input_sentence_size = 100000000
|
||||||
|
|
||||||
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||||
|
unk_id = len(user_defined_symbols)
|
||||||
|
# Note: unk_id is fixed to 2.
|
||||||
|
# If you change it, you should also change other
|
||||||
|
# places that are using it.
|
||||||
|
|
||||||
|
model_file = Path(model_prefix + ".model")
|
||||||
|
if not model_file.is_file():
|
||||||
|
spm.SentencePieceTrainer.train(
|
||||||
|
input=train_text,
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
model_type=model_type,
|
||||||
|
model_prefix=model_prefix,
|
||||||
|
input_sentence_size=input_sentence_size,
|
||||||
|
character_coverage=character_coverage,
|
||||||
|
user_defined_symbols=user_defined_symbols,
|
||||||
|
unk_id=unk_id,
|
||||||
|
bos_id=-1,
|
||||||
|
eos_id=-1,
|
||||||
|
byte_fallback=args.byte_fallback,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print(f"{model_file} exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/local/validate_bpe_lexicon.py
Symbolic link
1
egs/multi_zh-hans/ASR/local/validate_bpe_lexicon.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_bpe_lexicon.py
|
373
egs/multi_zh-hans/ASR/prepare.sh
Executable file
373
egs/multi_zh-hans/ASR/prepare.sh
Executable file
@ -0,0 +1,373 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
num_splits=100
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
vocab_sizes=(
|
||||||
|
2000
|
||||||
|
)
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
log "Dataset: musan"
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Soft link fbank of musan"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../librispeech/ASR/data/fbank/.musan.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_feats) .
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_cuts.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 4 --stop-stage 4"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: THCHS-30"
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Prepare THCHS-30"
|
||||||
|
if [ ! -d $dl_dir/thchs30 ]; then
|
||||||
|
log "Downloading THCHS-30"
|
||||||
|
lhotse download thchs-30 $dl_dir/thchs30
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/manifests/.thchs30.done ]; then
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare thchs-30 $dl_dir/thchs30 data/manifests/thchs30
|
||||||
|
touch data/manifests/.thchs30.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/fbank/.thchs30.done ]; then
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_thchs30.py
|
||||||
|
touch data/fbank/.thchs30.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: AISHELL-1"
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Prepare AISHELL-1"
|
||||||
|
if [ -e ../../aishell/ASR/data/fbank/.aishell.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../aishell/ASR/data/fbank/aishell_feats_train) .
|
||||||
|
ln -svf $(realpath ../../../../aishell/ASR/data/fbank/aishell_feats_dev) .
|
||||||
|
ln -svf $(realpath ../../../../aishell/ASR/data/fbank/aishell_feats_test) .
|
||||||
|
ln -svf $(realpath ../../../../aishell/ASR/data/fbank/aishell_cuts_train.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell/ASR/data/fbank/aishell_cuts_dev.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell/ASR/data/fbank/aishell_cuts_test.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../aishell/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: AISHELL-2"
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Prepare AISHELL-2"
|
||||||
|
if [ -e ../../aishell/ASR/data/fbank/.aishell2.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_feats_train) .
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_feats_dev) .
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_feats_test) .
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_cuts_train.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_cuts_dev.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_cuts_test.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../aishell2/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: AISHELL-4"
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Prepare AISHELL-4"
|
||||||
|
if [ -e ../../aishell/ASR/data/fbank/.aishell4.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_train) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_dev) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_test) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_train_L.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_train_M.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_train_S.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_dev.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_test.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../aishell4/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: ST-CMDS"
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "Stage 6: Prepare ST-CMDS"
|
||||||
|
if [ ! -f $dl_dir/stcmds/ST-CMDS-20170001_1-OS.tar.gz ]; then
|
||||||
|
log "Downloading ST-CMDS"
|
||||||
|
lhotse download stcmds $dl_dir/stcmds
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/manifests/.stcmds.done ]; then
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare stcmds $dl_dir/stcmds data/manifests/stcmds
|
||||||
|
touch data/manifests/.stcmds.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/fbank/.stcmds.done ]; then
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_stcmds.py
|
||||||
|
touch data/fbank/.stcmds.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
log "Dataset: Primewords"
|
||||||
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
|
log "Stage 7: Prepare Primewords"
|
||||||
|
if [ ! -f $dl_dir/primewords/primewords_md_2018_set1.tar.gz ]; then
|
||||||
|
log "Downloading Primewords"
|
||||||
|
lhotse download primewords $dl_dir/primewords
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/manifests/.stcmds.done ]; then
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare stcmds $dl_dir/primewords data/manifests/primewords
|
||||||
|
touch data/manifests/.primewords.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/fbank/.primewords.done ]; then
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_primewords.py
|
||||||
|
touch data/fbank/.primewords.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: MagicData"
|
||||||
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
|
log "Stage 8: Prepare MagicData"
|
||||||
|
if [ ! -f $dl_dir/magicdata/train_set.tar.gz ]; then
|
||||||
|
log "Downloading MagicData"
|
||||||
|
lhotse download magicdata $dl_dir/magicdata
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/manifests/.magicdata.done ]; then
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare magicdata $dl_dir/magicdata data/manifests/magicdata
|
||||||
|
touch data/manifests/.magicdata.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/fbank/.magicdata.done ]; then
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_magicdata.py
|
||||||
|
touch data/fbank/.magicdata.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: aidatatang_200zh"
|
||||||
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||||
|
log "Stage 9: Prepare aidatatang_200zh"
|
||||||
|
if [ -e ../../aidatatang_200zh/ASR/data/fbank/.aidatatang_200zh.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../aidatatang_200zh/ASR/data/fbank/aidatatang_feats_train) .
|
||||||
|
ln -svf $(realpath ../../../../aidatatang_200zh/ASR/data/fbank/aidatatang_feats_dev) .
|
||||||
|
ln -svf $(realpath ../../../../aidatatang_200zh/ASR/data/fbank/aidatatang_feats_test) .
|
||||||
|
ln -svf $(realpath ../../../../aidatatang_200zh/ASR/data/fbank/aidatatang_cuts_train.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aidatatang_200zh/ASR/data/fbank/aidatatang_cuts_dev.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../aidatatang_200zh/ASR/data/fbank/aidatatang_cuts_test.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../aidatatang_200zh/ASR/prepare.sh --stage 4 --stop-stage 4"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: Ali-Meeting"
|
||||||
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||||
|
log "Stage 10: Prepare Ali-Meeting"
|
||||||
|
if [ -e ../../alimeeting/ASR/data/fbank/.fbank.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../alimeeting/ASR/data/fbank/alimeeting-far_feats_train) .
|
||||||
|
ln -svf $(realpath ../../../../alimeeting/ASR/data/fbank/alimeeting-far_feats_eval) .
|
||||||
|
ln -svf $(realpath ../../../../alimeeting/ASR/data/fbank/alimeeting-far_feats_test) .
|
||||||
|
ln -svf $(realpath ../../../../alimeeting/ASR/data/fbank/alimeeting-far_cuts_train.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../alimeeting/ASR/data/fbank/alimeeting-far_cuts_eval.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../alimeeting/ASR/data/fbank/alimeeting-far_cuts_test.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../alimeeting/ASR/prepare.sh --stage 5 --stop-stage 5"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: WenetSpeech"
|
||||||
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||||
|
log "Stage 11: Prepare WenetSpeech"
|
||||||
|
if [ -e ../../wenetspeech/ASR/data/fbank/.preprocess_complete ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_DEV.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_L.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_TEST_MEETING.jsonl.gz) .
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_TEST_NET.jsonl.gz) .
|
||||||
|
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/L_split_1000) .
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/*.lca) .
|
||||||
|
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/) ./wenetspeech
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -d ../../wenetspeech/ASR/data/lang_char/ ]; then
|
||||||
|
cd data
|
||||||
|
cp -r ../../../../wenetspeech/ASR/data/lang_char .
|
||||||
|
cd ..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: KeSpeech"
|
||||||
|
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||||
|
log "Stage 12: Prepare KeSpeech"
|
||||||
|
if [ ! -d $dl_dir/KeSpeech ]; then
|
||||||
|
log "Abort! Please download KeSpeech first."
|
||||||
|
log "KeSpeech download link: https://github.com/KeSpeech/KeSpeech"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/manifests/.kespeech.done ]; then
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare kespeech -j 16 $dl_dir/KeSpeech data/manifests/kespeech
|
||||||
|
touch data/manifests/.kespeech.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/fbank/.kespeech.done ]; then
|
||||||
|
mkdir -p data/fbank
|
||||||
|
|
||||||
|
log "Preprocess KeSpeech manifest"
|
||||||
|
if [ ! -f data/fbank/.kespeech_preprocess_complete ]; then
|
||||||
|
python3 ./local/preprocess_kespeech.py
|
||||||
|
touch data/fbank/.kespeech_preprocess_complete
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -f data/fbank/.kespeech.train_phase1.split.${num_splits}.done ]; then
|
||||||
|
log "Spliting KeSpeech train_phase1"
|
||||||
|
lhotse split ${num_splits} \
|
||||||
|
data/fbank/kespeech/kespeech-asr_cuts_train_phase1_raw.jsonl.gz \
|
||||||
|
data/fbank/kespeech/train_phase1_split_${num_splits}
|
||||||
|
touch data/fbank/.kespeech.train_phase1.split.${num_splits}.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -f data/fbank/.kespeech.train_phase2.split.${num_splits}.done ]; then
|
||||||
|
log "Spliting KeSpeech train_phase2"
|
||||||
|
lhotse split ${num_splits} \
|
||||||
|
data/fbank/kespeech/kespeech-asr_cuts_train_phase2_raw.jsonl.gz \
|
||||||
|
data/fbank/kespeech/train_phase2_split_${num_splits}
|
||||||
|
touch data/fbank/.kespeech.train_phase2.split.${num_splits}.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Compute KeSpeech fbank for train_phase1"
|
||||||
|
./local/compute_fbank_kespeech_splits.py --num-splits ${num_splits} --training-subset train_phase1
|
||||||
|
|
||||||
|
log "Compute KeSpeech fbank for train_phase2"
|
||||||
|
./local/compute_fbank_kespeech_splits.py --num-splits ${num_splits} --training-subset train_phase2
|
||||||
|
|
||||||
|
log "Compute KeSpeech fbank for test/dev"
|
||||||
|
./local/compute_fbank_kespeech_dev_test.py
|
||||||
|
|
||||||
|
touch data/fbank/.kespeech.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
||||||
|
log "Stage 13: BPE model training (note that we use transcripts of wenetspeech only for BPE training)"
|
||||||
|
./local/prepare_for_bpe_model.py --lang-dir ./data/lang_char --text ./data/lang_char/text
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
if [ ! -f $lang_dir/bpe.model ]; then
|
||||||
|
./local/train_bpe_model.py \
|
||||||
|
--lang-dir $lang_dir \
|
||||||
|
--transcript ./data/lang_char/transcript_chars.txt \
|
||||||
|
--vocab-size $vocab_size
|
||||||
|
|
||||||
|
./local/bpe_model_to_tokens.py $lang_dir/bpe.model > $lang_dir/tokens.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
|
cp data/lang_char/words.txt $lang_dir
|
||||||
|
|
||||||
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||||
|
log "Validating $lang_dir/lexicon.txt"
|
||||||
|
./local/validate_bpe_lexicon.py \
|
||||||
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
|
--bpe-model $lang_dir/bpe.model
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L.fst ]; then
|
||||||
|
log "Converting L.pt to L.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L.pt \
|
||||||
|
$lang_dir/L.fst
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||||
|
log "Converting L_disambig.pt to L_disambig.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L_disambig.pt \
|
||||||
|
$lang_dir/L_disambig.fst
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
||||||
|
log "Stage 14: Prepare G (note that we use ngram lm of wenetspeech only for G preparation)"
|
||||||
|
|
||||||
|
if [ -d ../../wenetspeech/ASR/data/lang_char/ ]; then
|
||||||
|
cd data
|
||||||
|
ln -s ../../../../wenetspeech/ASR/data/lm .
|
||||||
|
cd ..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
|
||||||
|
log "Stage 15: Compile LG"
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
|
||||||
|
python ./local/compile_lg.py --lang-dir $lang_dir
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
1
egs/multi_zh-hans/ASR/shared
Symbolic link
1
egs/multi_zh-hans/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared
|
388
egs/multi_zh-hans/ASR/zipformer/asr_datamodule.py
Normal file
388
egs/multi_zh-hans/ASR/zipformer/asr_datamodule.py
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=300.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=True,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
1
egs/multi_zh-hans/ASR/zipformer/beam_search.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/beam_search.py
|
828
egs/multi_zh-hans/ASR/zipformer/decode.py
Executable file
828
egs/multi_zh-hans/ASR/zipformer/decode.py
Executable file
@ -0,0 +1,828 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search (one best)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(6) fast beam search (nbest oracle WER)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(7) fast beam search (with LG)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_2000/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bpe_2000",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
- fast_beam_search_nbest_LG
|
||||||
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||||
|
pad_len = 30
|
||||||
|
feature_lens += pad_len
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, pad_len),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_LG(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest":
|
||||||
|
hyp_tokens = fast_beam_search_nbest(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(supervisions["text"]),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key = f"beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
texts = [list(str(text).replace(" ", "")) for text in texts]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
word_table=word_table,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
hyp_text = "".join(hyp_words)
|
||||||
|
this_batch.append((cut_id, ref_text, hyp_text))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest",
|
||||||
|
"fast_beam_search_nbest_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
word_table = lexicon.word_table
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
word_table = None
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
word_table = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
multi_dataset = MultiDataset(args.manifest_dir)
|
||||||
|
|
||||||
|
def remove_short_utt(c: Cut):
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
if T <= 0:
|
||||||
|
logging.warning(
|
||||||
|
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||||
|
)
|
||||||
|
return T > 0
|
||||||
|
|
||||||
|
test_sets_cuts = multi_dataset.test_cuts()
|
||||||
|
|
||||||
|
test_sets = test_sets_cuts.keys()
|
||||||
|
test_dl = [
|
||||||
|
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_short_utt))
|
||||||
|
for cuts_name in test_sets
|
||||||
|
]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
logging.info(f"Start decoding test set: {test_set}")
|
||||||
|
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/zipformer/decoder.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/multi_zh-hans/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/multi_zh-hans/ASR/zipformer/export-onnx-streaming.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/export-onnx-streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx-streaming.py
|
1
egs/multi_zh-hans/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx.py
|
541
egs/multi_zh-hans/ASR/zipformer/export.py
Executable file
541
egs/multi_zh-hans/ASR/zipformer/export.py
Executable file
@ -0,0 +1,541 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
Note: This is a example for librispeech dataset, if you are using different
|
||||||
|
dataset, you should change the argument values according to your dataset.
|
||||||
|
|
||||||
|
(1) Export to torchscript model using torch.jit.script()
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
|
||||||
|
load it by `torch.jit.load("jit_script.pt")`.
|
||||||
|
|
||||||
|
Check ./jit_pretrained.py for its usage.
|
||||||
|
|
||||||
|
Check https://github.com/k2-fsa/sherpa
|
||||||
|
for how to use the exported models outside of icefall.
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
|
||||||
|
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
|
||||||
|
|
||||||
|
Check ./jit_pretrained_streaming.py for its usage.
|
||||||
|
|
||||||
|
Check https://github.com/k2-fsa/sherpa
|
||||||
|
for how to use the exported models outside of icefall.
|
||||||
|
|
||||||
|
(2) Export `model.state_dict()`
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--causal 1 \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||||
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
To use the generated file with `zipformer/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bpe_2000/bpe.model
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
|
||||||
|
# simulated streaming decoding
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bpe_2000/bpe.model
|
||||||
|
|
||||||
|
# chunk-wise streaming decoding
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bpe_2000/bpe.model
|
||||||
|
|
||||||
|
Check ./pretrained.py for its usage.
|
||||||
|
|
||||||
|
Note: If you don't want to train a model from scratch, we have
|
||||||
|
provided one for you. You can get it at
|
||||||
|
|
||||||
|
- non-streaming model:
|
||||||
|
https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
|
||||||
|
|
||||||
|
with the following commands:
|
||||||
|
|
||||||
|
sudo apt-get install git-lfs
|
||||||
|
git lfs install
|
||||||
|
git clone https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
|
||||||
|
# You will find the pre-trained models in exp dir
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import make_pad_mask, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def num_tokens(
|
||||||
|
token_table: k2.SymbolTable, disambig_pattern: str = re.compile(r"^#\d+$")
|
||||||
|
) -> int:
|
||||||
|
"""Return the number of tokens excluding those from
|
||||||
|
disambiguation symbols.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
0 is not a token ID so it is excluded from the return value.
|
||||||
|
"""
|
||||||
|
symbols = token_table.symbols
|
||||||
|
ans = []
|
||||||
|
for s in symbols:
|
||||||
|
if not disambig_pattern.match(s):
|
||||||
|
ans.append(token_table[s])
|
||||||
|
num_tokens = len(ans)
|
||||||
|
if 0 in ans:
|
||||||
|
num_tokens -= 1
|
||||||
|
return num_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_2000/tokens.txt",
|
||||||
|
help="Path to the tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
It will generate a file named jit_script.pt.
|
||||||
|
Check ./jit_pretrained.py for how to use it.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderModel(nn.Module):
|
||||||
|
"""A wrapper for encoder and encoder_embed"""
|
||||||
|
|
||||||
|
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_embed = encoder_embed
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, features: Tensor, feature_lengths: Tensor
|
||||||
|
) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
features: (N, T, C)
|
||||||
|
feature_lengths: (N,)
|
||||||
|
"""
|
||||||
|
x, x_lens = self.encoder_embed(features, feature_lengths)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
return encoder_out, encoder_out_lens
|
||||||
|
|
||||||
|
|
||||||
|
class StreamingEncoderModel(nn.Module):
|
||||||
|
"""A wrapper for encoder and encoder_embed"""
|
||||||
|
|
||||||
|
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||||
|
super().__init__()
|
||||||
|
assert len(encoder.chunk_size) == 1, encoder.chunk_size
|
||||||
|
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
|
||||||
|
self.chunk_size = encoder.chunk_size[0]
|
||||||
|
self.left_context_len = encoder.left_context_frames[0]
|
||||||
|
|
||||||
|
# The encoder_embed subsample features (T - 7) // 2
|
||||||
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||||
|
self.pad_length = 7 + 2 * 3
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_embed = encoder_embed
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
|
||||||
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||||
|
"""Streaming forward for encoder_embed and encoder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
features: (N, T, C)
|
||||||
|
feature_lengths: (N,)
|
||||||
|
states: a list of Tensors
|
||||||
|
|
||||||
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
|
"""
|
||||||
|
chunk_size = self.chunk_size
|
||||||
|
left_context_len = self.left_context_len
|
||||||
|
|
||||||
|
cached_embed_left_pad = states[-2]
|
||||||
|
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lengths,
|
||||||
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
)
|
||||||
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# processed_mask is used to mask out initial states
|
||||||
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||||
|
x.size(0), left_context_len
|
||||||
|
)
|
||||||
|
processed_lens = states[-1] # (batch,)
|
||||||
|
# (batch, left_context_size)
|
||||||
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||||
|
# Update processed lengths
|
||||||
|
new_processed_lens = processed_lens + x_lens
|
||||||
|
|
||||||
|
# (batch, left_context_size + chunk_size)
|
||||||
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
encoder_states = states[:-2]
|
||||||
|
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
new_encoder_states,
|
||||||
|
) = self.encoder.streaming_forward(
|
||||||
|
x=x,
|
||||||
|
x_lens=x_lens,
|
||||||
|
states=encoder_states,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
new_states = new_encoder_states + [
|
||||||
|
new_cached_embed_left_pad,
|
||||||
|
new_processed_lens,
|
||||||
|
]
|
||||||
|
return encoder_out, encoder_out_lens, new_states
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def get_init_states(
|
||||||
|
self,
|
||||||
|
batch_size: int = 1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||||
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||||
|
states[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
"""
|
||||||
|
states = self.encoder.get_init_states(batch_size, device)
|
||||||
|
|
||||||
|
embed_states = self.encoder_embed.get_init_states(batch_size, device)
|
||||||
|
states.append(embed_states)
|
||||||
|
|
||||||
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||||
|
states.append(processed_lens)
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
# if torch.cuda.is_available():
|
||||||
|
# device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
params.blank_id = token_table["<blk>"]
|
||||||
|
params.vocab_size = num_tokens(token_table) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit is True:
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
|
# it here.
|
||||||
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||||
|
# torch scriptabe.
|
||||||
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
|
|
||||||
|
# Wrap encoder and encoder_embed as a module
|
||||||
|
if params.causal:
|
||||||
|
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
|
||||||
|
chunk_size = model.encoder.chunk_size
|
||||||
|
left_context_len = model.encoder.left_context_len
|
||||||
|
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
|
||||||
|
else:
|
||||||
|
model.encoder = EncoderModel(model.encoder, model.encoder_embed)
|
||||||
|
filename = "jit_script.pt"
|
||||||
|
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
model.save(str(params.exp_dir / filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torchscript. Export model.state_dict()")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
193
egs/multi_zh-hans/ASR/zipformer/generate_averaged_model.py
Executable file
193
egs/multi_zh-hans/ASR/zipformer/generate_averaged_model.py
Executable file
@ -0,0 +1,193 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) use the checkpoint exp_dir/epoch-xxx.pt
|
||||||
|
./zipformer/generate_averaged_model.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp
|
||||||
|
|
||||||
|
It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`.
|
||||||
|
You can later load it by `torch.load("epoch-28-avg-15.pt")`.
|
||||||
|
|
||||||
|
(2) use the checkpoint exp_dir/checkpoint-iter.pt
|
||||||
|
./zipformer/generate_averaged_model.py \
|
||||||
|
--iter 22000 \
|
||||||
|
--avg 5 \
|
||||||
|
--exp-dir ./zipformer/exp
|
||||||
|
|
||||||
|
It will generate a file `iter-22000-avg-5.pt` in the given `exp_dir`.
|
||||||
|
You can later load it by `torch.load("iter-22000-avg-5.pt")`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints_with_averaged_model, find_checkpoints
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=9,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/tokens.txt",
|
||||||
|
help="Path to the tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
print("Script started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
print(f"Device: {device}")
|
||||||
|
|
||||||
|
symbol_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
params.blank_id = symbol_table["<blk>"]
|
||||||
|
params.unk_id = symbol_table["<unk>"]
|
||||||
|
params.vocab_size = len(symbol_table)
|
||||||
|
|
||||||
|
print("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
print(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
filename = params.exp_dir / f"iter-{params.iter}-avg-{params.avg}.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, filename)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
print(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, filename)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
print("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/zipformer/jit_pretrained.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/jit_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/jit_pretrained.py
|
1
egs/multi_zh-hans/ASR/zipformer/jit_pretrained_ctc.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/jit_pretrained_ctc.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/jit_pretrained_ctc.py
|
1
egs/multi_zh-hans/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/jit_pretrained_streaming.py
|
1
egs/multi_zh-hans/ASR/zipformer/joiner.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/multi_zh-hans/ASR/zipformer/model.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/model.py
|
316
egs/multi_zh-hans/ASR/zipformer/multi_dataset.py
Normal file
316
egs/multi_zh-hans/ASR/zipformer/multi_dataset.py
Normal file
@ -0,0 +1,316 @@
|
|||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List
|
||||||
|
|
||||||
|
import lhotse
|
||||||
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
|
|
||||||
|
|
||||||
|
class MultiDataset:
|
||||||
|
def __init__(self, fbank_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files:
|
||||||
|
- aidatatang_cuts_train.jsonl.gz
|
||||||
|
- aishell_cuts_train.jsonl.gz
|
||||||
|
- aishell2_cuts_train.jsonl.gz
|
||||||
|
- aishell4_cuts_train_L.jsonl.gz
|
||||||
|
- aishell4_cuts_train_M.jsonl.gz
|
||||||
|
- aishell4_cuts_train_S.jsonl.gz
|
||||||
|
- alimeeting-far_cuts_train.jsonl.gz
|
||||||
|
- magicdata_cuts_train.jsonl.gz
|
||||||
|
- primewords_cuts_train.jsonl.gz
|
||||||
|
- stcmds_cuts_train.jsonl.gz
|
||||||
|
- thchs_30_cuts_train.jsonl.gz
|
||||||
|
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
|
||||||
|
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
|
||||||
|
- wenetspeech/cuts_L.jsonl.gz
|
||||||
|
"""
|
||||||
|
self.fbank_dir = Path(fbank_dir)
|
||||||
|
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get multidataset train cuts")
|
||||||
|
|
||||||
|
# THCHS-30
|
||||||
|
logging.info("Loading THCHS-30 in lazy mode")
|
||||||
|
thchs_30_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL-1
|
||||||
|
logging.info("Loading Aishell-1 in lazy mode")
|
||||||
|
aishell_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL-2
|
||||||
|
logging.info("Loading Aishell-2 in lazy mode")
|
||||||
|
aishell_2_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL-4
|
||||||
|
logging.info("Loading Aishell-4 in lazy mode")
|
||||||
|
aishell_4_L_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
|
||||||
|
)
|
||||||
|
aishell_4_M_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
|
||||||
|
)
|
||||||
|
aishell_4_S_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# ST-CMDS
|
||||||
|
logging.info("Loading ST-CMDS in lazy mode")
|
||||||
|
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
|
||||||
|
|
||||||
|
# Primewords
|
||||||
|
logging.info("Loading Primewords in lazy mode")
|
||||||
|
primewords_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# MagicData
|
||||||
|
logging.info("Loading MagicData in lazy mode")
|
||||||
|
magicdata_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Aidatatang_200zh
|
||||||
|
logging.info("Loading Aidatatang_200zh in lazy mode")
|
||||||
|
aidatatang_200zh_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aidatatang_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ali-Meeting
|
||||||
|
logging.info("Loading Ali-Meeting in lazy mode")
|
||||||
|
alimeeting_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# WeNetSpeech
|
||||||
|
logging.info("Loading WeNetSpeech in lazy mode")
|
||||||
|
wenetspeech_L_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "wenetspeech" / "cuts_L.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# KeSpeech
|
||||||
|
logging.info("Loading KeSpeech in lazy mode")
|
||||||
|
kespeech_1_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
|
||||||
|
)
|
||||||
|
kespeech_2_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
return CutSet.mux(
|
||||||
|
thchs_30_cuts,
|
||||||
|
aishell_cuts,
|
||||||
|
aishell_2_cuts,
|
||||||
|
aishell_4_L_cuts,
|
||||||
|
aishell_4_M_cuts,
|
||||||
|
aishell_4_S_cuts,
|
||||||
|
stcmds_cuts,
|
||||||
|
primewords_cuts,
|
||||||
|
magicdata_cuts,
|
||||||
|
aidatatang_200zh_cuts,
|
||||||
|
alimeeting_cuts,
|
||||||
|
wenetspeech_L_cuts,
|
||||||
|
kespeech_1_cuts,
|
||||||
|
kespeech_2_cuts,
|
||||||
|
weights=[
|
||||||
|
len(thchs_30_cuts),
|
||||||
|
len(aishell_cuts),
|
||||||
|
len(aishell_2_cuts),
|
||||||
|
len(aishell_4_L_cuts),
|
||||||
|
len(aishell_4_M_cuts),
|
||||||
|
len(aishell_4_S_cuts),
|
||||||
|
len(stcmds_cuts),
|
||||||
|
len(primewords_cuts),
|
||||||
|
len(magicdata_cuts),
|
||||||
|
len(aidatatang_200zh_cuts),
|
||||||
|
len(alimeeting_cuts),
|
||||||
|
len(wenetspeech_L_cuts),
|
||||||
|
len(kespeech_1_cuts),
|
||||||
|
len(kespeech_2_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get multidataset dev cuts")
|
||||||
|
|
||||||
|
# Aidatatang_200zh
|
||||||
|
logging.info("Loading Aidatatang_200zh DEV set in lazy mode")
|
||||||
|
aidatatang_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL
|
||||||
|
logging.info("Loading Aishell DEV set in lazy mode")
|
||||||
|
aishell_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL-2
|
||||||
|
logging.info("Loading Aishell-2 DEV set in lazy mode")
|
||||||
|
aishell2_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ali-Meeting
|
||||||
|
logging.info("Loading Ali-Meeting DEV set in lazy mode")
|
||||||
|
alimeeting_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# MagicData
|
||||||
|
logging.info("Loading MagicData DEV set in lazy mode")
|
||||||
|
magicdata_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# KeSpeech
|
||||||
|
logging.info("Loading KeSpeech DEV set in lazy mode")
|
||||||
|
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||||
|
)
|
||||||
|
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# WeNetSpeech
|
||||||
|
logging.info("Loading WeNetSpeech DEV set in lazy mode")
|
||||||
|
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
return wenetspeech_dev_cuts
|
||||||
|
# return [
|
||||||
|
# aidatatang_dev_cuts,
|
||||||
|
# aishell_dev_cuts,
|
||||||
|
# aishell2_dev_cuts,
|
||||||
|
# alimeeting_dev_cuts,
|
||||||
|
# magicdata_dev_cuts,
|
||||||
|
# kespeech_dev_phase1_cuts,
|
||||||
|
# kespeech_dev_phase2_cuts,
|
||||||
|
# wenetspeech_dev_cuts,
|
||||||
|
# ]
|
||||||
|
|
||||||
|
def test_cuts(self) -> Dict[str, CutSet]:
|
||||||
|
logging.info("About to get multidataset test cuts")
|
||||||
|
|
||||||
|
# Aidatatang_200zh
|
||||||
|
logging.info("Loading Aidatatang_200zh set in lazy mode")
|
||||||
|
aidatatang_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aidatatang_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
aidatatang_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL
|
||||||
|
logging.info("Loading Aishell set in lazy mode")
|
||||||
|
aishell_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
aishell_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL-2
|
||||||
|
logging.info("Loading Aishell-2 set in lazy mode")
|
||||||
|
aishell2_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
aishell2_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# AISHELL-4
|
||||||
|
logging.info("Loading Aishell-4 TEST set in lazy mode")
|
||||||
|
aishell4_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ali-Meeting
|
||||||
|
logging.info("Loading Ali-Meeting set in lazy mode")
|
||||||
|
alimeeting_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
alimeeting_eval_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# MagicData
|
||||||
|
logging.info("Loading MagicData set in lazy mode")
|
||||||
|
magicdata_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
magicdata_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# KeSpeech
|
||||||
|
logging.info("Loading KeSpeech set in lazy mode")
|
||||||
|
kespeech_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||||
|
)
|
||||||
|
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
# WeNetSpeech
|
||||||
|
logging.info("Loading WeNetSpeech set in lazy mode")
|
||||||
|
wenetspeech_test_meeting_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
|
||||||
|
)
|
||||||
|
wenetspeech_test_net_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
|
||||||
|
)
|
||||||
|
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"aidatatang_test": aidatatang_test_cuts,
|
||||||
|
"aidatatang_dev": aidatatang_dev_cuts,
|
||||||
|
"alimeeting_test": alimeeting_test_cuts,
|
||||||
|
"alimeeting_eval": alimeeting_eval_cuts,
|
||||||
|
"aishell_test": aishell_test_cuts,
|
||||||
|
"aishell_dev": aishell_dev_cuts,
|
||||||
|
"aishell-2_test": aishell2_test_cuts,
|
||||||
|
"aishell-2_dev": aishell2_dev_cuts,
|
||||||
|
"aishell-4": aishell4_test_cuts,
|
||||||
|
"magicdata_test": magicdata_test_cuts,
|
||||||
|
"magicdata_dev": magicdata_dev_cuts,
|
||||||
|
"kespeech-asr_test": kespeech_test_cuts,
|
||||||
|
"kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
|
||||||
|
"kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
|
||||||
|
"wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
|
||||||
|
"wenetspeech-net_test": wenetspeech_test_net_cuts,
|
||||||
|
"wenetspeech_dev": wenetspeech_dev_cuts,
|
||||||
|
}
|
1
egs/multi_zh-hans/ASR/zipformer/onnx_check.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_check.py
|
1
egs/multi_zh-hans/ASR/zipformer/onnx_decode.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/onnx_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_decode.py
|
1
egs/multi_zh-hans/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming.py
|
1
egs/multi_zh-hans/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/multi_zh-hans/ASR/zipformer/optim.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/optim.py
|
381
egs/multi_zh-hans/ASR/zipformer/pretrained.py
Executable file
381
egs/multi_zh-hans/ASR/zipformer/pretrained.py
Executable file
@ -0,0 +1,381 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads a checkpoint and uses it to decode waves.
|
||||||
|
You can generate the checkpoint with the following command:
|
||||||
|
|
||||||
|
Note: This is a example for librispeech dataset, if you are using different
|
||||||
|
dataset, you should change the argument values according to your dataset.
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--epoch 23 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
./zipformer/export.py \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--causal 1 \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--epoch 23 \
|
||||||
|
--avg 1
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
- For non-streaming model:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--tokens data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--tokens ./data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method modified_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--tokens ./data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method fast_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
- For streaming model:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens ./data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens ./data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method modified_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 16 \
|
||||||
|
--left-context-frames 128 \
|
||||||
|
--tokens ./data/lang_bpe_2000/tokens.txt \
|
||||||
|
--method fast_beam_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
|
You can also use `./zipformer/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from export import num_tokens
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.utils import make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
help="""Path to tokens.txt.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0].contiguous())
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
|
||||||
|
params.blank_id = token_table["<blk>"]
|
||||||
|
params.unk_id = token_table["<unk>"]
|
||||||
|
params.vocab_size = num_tokens(token_table) + 1
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
# model forward
|
||||||
|
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||||
|
text = ""
|
||||||
|
for i in token_ids:
|
||||||
|
text += token_table[i]
|
||||||
|
return text.replace("▁", " ").strip()
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
s += f"{filename}:\n{hyp}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/multi_zh-hans/ASR/zipformer/scaling.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/multi_zh-hans/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/multi_zh-hans/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
1
egs/multi_zh-hans/ASR/zipformer/streaming_decode.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/streaming_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_decode.py
|
1
egs/multi_zh-hans/ASR/zipformer/subsampling.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/subsampling.py
|
1385
egs/multi_zh-hans/ASR/zipformer/train.py
Executable file
1385
egs/multi_zh-hans/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/multi_zh-hans/ASR/zipformer/zipformer.py
Symbolic link
1
egs/multi_zh-hans/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/zipformer.py
|
@ -30,7 +30,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 for AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 for AudioSamples
|
||||||
@ -311,8 +311,8 @@ class TAL_CSASRAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -724,12 +724,12 @@ def main():
|
|||||||
)
|
)
|
||||||
save_results(
|
save_results(
|
||||||
params=params,
|
params=params,
|
||||||
test_set_name=test_set,
|
test_set_name=test_set + "-zh",
|
||||||
results_dict=zh_results_dict,
|
results_dict=zh_results_dict,
|
||||||
)
|
)
|
||||||
save_results(
|
save_results(
|
||||||
params=params,
|
params=params,
|
||||||
test_set_name=test_set,
|
test_set_name=test_set + "-en",
|
||||||
results_dict=en_results_dict,
|
results_dict=en_results_dict,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ from lhotse.dataset import (
|
|||||||
CutMix,
|
CutMix,
|
||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -259,8 +259,8 @@ class TedLiumAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
@ -282,7 +282,6 @@ class TedLiumAsrDataModule:
|
|||||||
return train_dl
|
return train_dl
|
||||||
|
|
||||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
|
||||||
transforms = []
|
transforms = []
|
||||||
if self.args.concatenate_cuts:
|
if self.args.concatenate_cuts:
|
||||||
transforms = [
|
transforms = [
|
||||||
@ -322,7 +321,6 @@ class TedLiumAsrDataModule:
|
|||||||
return valid_dl
|
return valid_dl
|
||||||
|
|
||||||
def test_dataloaders(self, cuts_test: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts_test: CutSet) -> DataLoader:
|
||||||
|
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
|
@ -30,7 +30,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -225,8 +225,8 @@ class TimitAsrDataModule(DataModule):
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
@ -267,7 +267,7 @@ class TimitAsrDataModule(DataModule):
|
|||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
valid_sampler = SingleCutSampler(
|
valid_sampler = SimpleCutSampler(
|
||||||
cuts_valid,
|
cuts_valid,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
@ -298,7 +298,7 @@ class TimitAsrDataModule(DataModule):
|
|||||||
else PrecomputedFeatures(),
|
else PrecomputedFeatures(),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = SingleCutSampler(cuts_test, max_duration=self.args.max_duration)
|
sampler = SimpleCutSampler(cuts_test, max_duration=self.args.max_duration)
|
||||||
logging.debug("About to create test dataloader")
|
logging.debug("About to create test dataloader")
|
||||||
test_dl = DataLoader(test, batch_size=None, sampler=sampler, num_workers=1)
|
test_dl = DataLoader(test, batch_size=None, sampler=sampler, num_workers=1)
|
||||||
test_loaders.append(test_dl)
|
test_loaders.append(test_dl)
|
||||||
|
@ -28,6 +28,7 @@ from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWri
|
|||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
torch.set_num_threads(1)
|
torch.set_num_threads(1)
|
||||||
torch.set_num_interop_threads(1)
|
torch.set_num_interop_threads(1)
|
||||||
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_wenetspeech_dev_test():
|
def compute_fbank_wenetspeech_dev_test():
|
||||||
|
@ -37,6 +37,7 @@ from lhotse import (
|
|||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
torch.set_num_threads(1)
|
torch.set_num_threads(1)
|
||||||
torch.set_num_interop_threads(1)
|
torch.set_num_interop_threads(1)
|
||||||
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
|
@ -37,7 +37,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -296,8 +296,8 @@ class WenetSpeechAsrDataModule:
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -32,7 +32,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import AudioSamples # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import AudioSamples # noqa F401 For AudioSamples
|
||||||
@ -299,8 +299,8 @@ class Xbmu_AmdoAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -26,7 +26,7 @@ from lhotse.dataset import (
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
@ -196,8 +196,8 @@ class YesNoAsrDataModule(DataModule):
|
|||||||
drop_last=True,
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
|
@ -493,6 +493,7 @@ def write_error_stats(
|
|||||||
test_set_name: str,
|
test_set_name: str,
|
||||||
results: List[Tuple[str, str]],
|
results: List[Tuple[str, str]],
|
||||||
enable_log: bool = True,
|
enable_log: bool = True,
|
||||||
|
sclite_mode: bool = False,
|
||||||
) -> float:
|
) -> float:
|
||||||
"""Write statistics based on predicted results and reference transcripts.
|
"""Write statistics based on predicted results and reference transcripts.
|
||||||
|
|
||||||
@ -538,7 +539,7 @@ def write_error_stats(
|
|||||||
num_corr = 0
|
num_corr = 0
|
||||||
ERR = "*"
|
ERR = "*"
|
||||||
for cut_id, ref, hyp in results:
|
for cut_id, ref, hyp in results:
|
||||||
ali = kaldialign.align(ref, hyp, ERR)
|
ali = kaldialign.align(ref, hyp, ERR, sclite_mode=sclite_mode)
|
||||||
for ref_word, hyp_word in ali:
|
for ref_word, hyp_word in ali:
|
||||||
if ref_word == ERR:
|
if ref_word == ERR:
|
||||||
ins[hyp_word] += 1
|
ins[hyp_word] += 1
|
||||||
|
@ -10,12 +10,13 @@ graphviz==0.19.1
|
|||||||
|
|
||||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.13.1+cpu
|
-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.13.1+cpu
|
||||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.13.1+cpu
|
-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.13.1+cpu
|
||||||
|
six
|
||||||
|
|
||||||
-f https://k2-fsa.org/nightly/ k2==1.23.4.dev20230319+cpu.torch1.13.1
|
-f https://k2-fsa.org/nightly/ k2==1.23.4.dev20230319+cpu.torch1.13.1
|
||||||
|
|
||||||
git+https://github.com/lhotse-speech/lhotse
|
git+https://github.com/lhotse-speech/lhotse
|
||||||
kaldilm==1.11
|
kaldilm==1.11
|
||||||
kaldialign==0.2
|
kaldialign==0.7.1
|
||||||
sentencepiece==0.1.96
|
sentencepiece==0.1.96
|
||||||
tensorboard==2.8.0
|
tensorboard==2.8.0
|
||||||
typeguard==2.13.3
|
typeguard==2.13.3
|
||||||
|
@ -26,7 +26,7 @@
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from lhotse import CutSet, load_manifest
|
from lhotse import CutSet, load_manifest
|
||||||
from lhotse.dataset import K2SpeechRecognitionDataset, SingleCutSampler
|
from lhotse.dataset import K2SpeechRecognitionDataset, SimpleCutSampler
|
||||||
from lhotse.dataset.collation import collate_custom_field
|
from lhotse.dataset.collation import collate_custom_field
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
@ -44,7 +44,7 @@ def get_dataloader():
|
|||||||
cuts = load_manifest(cuts_json)
|
cuts = load_manifest(cuts_json)
|
||||||
print(cuts[0])
|
print(cuts[0])
|
||||||
cuts = cuts.with_features_path_prefix(egs_dir)
|
cuts = cuts.with_features_path_prefix(egs_dir)
|
||||||
sampler = SingleCutSampler(
|
sampler = SimpleCutSampler(
|
||||||
cuts,
|
cuts,
|
||||||
max_duration=10,
|
max_duration=10,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user