mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-06 23:54:17 +00:00
Add H and HL decoding
This commit is contained in:
parent
880a8867cb
commit
ef04eac536
22
.github/scripts/run-pre-trained-ctc.sh
vendored
22
.github/scripts/run-pre-trained-ctc.sh
vendored
@ -29,9 +29,29 @@ log "CTC greedy search"
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC H decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_H.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--tokens $repo/tokens.txt \
|
||||
--H $repo/H.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC HL decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HL.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--words $repo/words.txt \
|
||||
--HL $repo/HL.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC HLG decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_hlg.py \
|
||||
./zipformer/onnx_pretrained_ctc_HLG.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--words $repo/words.txt \
|
||||
--HLG $repo/HLG.fst \
|
||||
|
2
.github/workflows/run-pretrained-ctc.yml
vendored
2
.github/workflows/run-pretrained-ctc.yml
vendored
@ -35,7 +35,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_pre_trained_conformer_ctc:
|
||||
run_pre_trained_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.inputs.test-run == 'y' || github.event.label.name == 'ctc'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
|
277
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_H.py
Executable file
277
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_H.py
Executable file
@ -0,0 +1,277 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
"""
|
||||
This script loads ONNX models and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Please follow ./export-onnx-ctc.py to get the onnx model.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_H.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--tokens /path/to/data/lang_bpe_500/tokens.txt \
|
||||
--H /path/to/H.fst \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
|
||||
You can find exported ONNX models at
|
||||
https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
from typing import Dict
|
||||
import kaldifst
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="""Path to tokens.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--H",
|
||||
type=str,
|
||||
help="""Path to H.fst.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
nn_model: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_model(nn_model)
|
||||
|
||||
def init_model(self, nn_model: str):
|
||||
self.model = ort.InferenceSession(
|
||||
nn_model,
|
||||
sess_options=self.session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
meta = self.model.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D float tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D int64 tensor of shape (N,)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A float tensor containing log_probs of shape (N, T, C)
|
||||
- A int64 tensor containing log_probs_len of shape (N)
|
||||
"""
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
log_probs: torch.Tensor,
|
||||
H: kaldifst,
|
||||
id2token: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
log_probs:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
H:
|
||||
The H graph.
|
||||
id2word:
|
||||
A map mapping token ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {log_probs.shape}")
|
||||
decodable = DecodableCtc(log_probs.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(H, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# tokens are incremented during graph construction
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2token[i - 1] for i in osymbols_out if i != 1]
|
||||
hyps = "".join(hyps).split("\u2581") # unicode codepoint of ▁
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
model = OnnxModel(
|
||||
nn_model=args.nn_model,
|
||||
)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = args.sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
logging.info(f"Loading H from {args.H}")
|
||||
H = kaldifst.StdVectorFst.read(args.H)
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files,
|
||||
expected_sample_rate=args.sample_rate,
|
||||
)
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
features = pad_sequence(
|
||||
features,
|
||||
batch_first=True,
|
||||
padding_value=math.log(1e-10),
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||
log_probs, log_probs_len = model(features, feature_lengths)
|
||||
|
||||
token_table = k2.SymbolTable.from_file(args.tokens)
|
||||
|
||||
hyps = []
|
||||
for i in range(log_probs.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
log_probs=log_probs[i, : log_probs_len[i]],
|
||||
H=H,
|
||||
id2token=token_table,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
275
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
Executable file
275
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
Executable file
@ -0,0 +1,275 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
"""
|
||||
This script loads ONNX models and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Please follow ./export-onnx-ctc.py to get the onnx model.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HL.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--words /path/to/data/lang_bpe_500/words.txt \
|
||||
--HL /path/to/HL.fst \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
|
||||
You can find exported ONNX models at
|
||||
https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
from typing import Dict
|
||||
import kaldifst
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
help="""Path to words.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HL",
|
||||
type=str,
|
||||
help="""Path to HL.fst.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
nn_model: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_model(nn_model)
|
||||
|
||||
def init_model(self, nn_model: str):
|
||||
self.model = ort.InferenceSession(
|
||||
nn_model,
|
||||
sess_options=self.session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
meta = self.model.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D float tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D int64 tensor of shape (N,)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A float tensor containing log_probs of shape (N, T, C)
|
||||
- A int64 tensor containing log_probs_len of shape (N)
|
||||
"""
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
log_probs: torch.Tensor,
|
||||
HL: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
log_probs:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
HL:
|
||||
The HL graph.
|
||||
id2word:
|
||||
A map mapping word ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {log_probs.shape}")
|
||||
decodable = DecodableCtc(log_probs.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2word[i] for i in osymbols_out]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
model = OnnxModel(
|
||||
nn_model=args.nn_model,
|
||||
)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = args.sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
logging.info(f"Loading HL from {args.HL}")
|
||||
HL = kaldifst.StdVectorFst.read(args.HL)
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files,
|
||||
expected_sample_rate=args.sample_rate,
|
||||
)
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
features = pad_sequence(
|
||||
features,
|
||||
batch_first=True,
|
||||
padding_value=math.log(1e-10),
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||
log_probs, log_probs_len = model(features, feature_lengths)
|
||||
|
||||
word_table = k2.SymbolTable.from_file(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(log_probs.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
log_probs=log_probs[i, : log_probs_len[i]],
|
||||
HL=HL,
|
||||
id2word=word_table,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -12,13 +12,16 @@ as an example to show how to use this file.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_hlg.py \
|
||||
./zipformer/onnx_pretrained_ctc_HLG.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--words /path/to/data/lang_bpe_500/words.txt \
|
||||
--hlg /path/to/HLG.fst \
|
||||
--HLG /path/to/HLG.fst \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
|
||||
You can find exported ONNX models at
|
||||
https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
"""
|
||||
|
||||
import argparse
|
Loading…
x
Reference in New Issue
Block a user