mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Add a multiplication to NonlinAttentionModule
This commit is contained in:
parent
ec8804283c
commit
eeadc3b0cc
@ -1602,7 +1602,7 @@ class NonlinAttention(nn.Module):
|
||||
|
||||
self.hidden_channels = hidden_channels
|
||||
|
||||
self.in_proj = nn.Linear(channels, hidden_channels * 2, bias=True)
|
||||
self.in_proj = nn.Linear(channels, hidden_channels * 3, bias=True)
|
||||
|
||||
# balancer that goes before the sigmoid. Have quite a large min_abs value, at 2.0,
|
||||
# because we noticed that well-trained instances of this module have abs-value before the sigmoid
|
||||
@ -1617,7 +1617,10 @@ class NonlinAttention(nn.Module):
|
||||
)
|
||||
self.tanh = nn.Tanh()
|
||||
|
||||
self.activation = Identity() # for diagnostics.
|
||||
self.identity1 = Identity() # for diagnostics.
|
||||
self.identity2 = Identity() # for diagnostics.
|
||||
self.identity3 = Identity() # for diagnostics.
|
||||
|
||||
self.out_proj = ScaledLinear(hidden_channels, channels,
|
||||
bias=True,
|
||||
initial_scale=0.05)
|
||||
@ -1652,16 +1655,17 @@ attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
|
||||
(seq_len, batch_size, _) = x.shape
|
||||
hidden_channels = self.hidden_channels
|
||||
|
||||
s = x[..., hidden_channels:]
|
||||
x = x[..., :hidden_channels]
|
||||
s, x, y = x.chunk(3, dim=-1)
|
||||
|
||||
# s will go through tanh.
|
||||
|
||||
s = self.balancer(s)
|
||||
s = self.tanh(s)
|
||||
|
||||
s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels)
|
||||
x = self.whiten1(x)
|
||||
x = self.activation(x) # diagnostics only, it's the identity.
|
||||
x = x * s
|
||||
x = self.identity1(x) # diagnostics only, it's the identity.
|
||||
|
||||
(seq_len, batch_size, embed_dim) = x.shape
|
||||
num_heads = attn_weights.shape[0]
|
||||
@ -1673,6 +1677,11 @@ attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
|
||||
# now x: (num_heads, batch_size, seq_len, head_dim)
|
||||
x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1)
|
||||
|
||||
|
||||
y = self.identity2(y)
|
||||
x = x * y
|
||||
x = self.identity3(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
x = self.whiten2(x)
|
||||
return x
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user