From ee42fa7cb59299241861c1ed0773561531c8d2e4 Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Wed, 26 Apr 2023 14:54:37 +0900 Subject: [PATCH] from local --- .../.model.py.swp | Bin 4096 -> 24576 bytes .../model.py | 8 ++++++++ 2 files changed, 8 insertions(+) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.model.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.model.py.swp index 19ce5b161f941ec06856a2cd93249271f72a3cd1..d57f63b173591823868b3c1986d4b4bd69536372 100644 GIT binary patch literal 24576 zcmeHPZHy#E8E){DLp&4}6HS0(k9a*g+xu~MC`$%i?hbAR_Q=j2sGD`RXS!ylZ+p7? zx_WkZFoB>kDk>pDVoXGgkqAFf;s-&+1c4YeC?+PF5PzsaV*(~dV;d+B*ee~AD-lgBUcgIDSoMw4ZpHJ`I zH%mb;b{#}KKJ+KAaXXhs(fYMXlm}NM%871o?b~}8^@9?f01XH{xrUJj6 z_#)=K)1R7eE=|SBFyvk_%&2c4`oLJaFRCcv01JrGZKV zrUr&-ck(MnTE9Q0f3wAZ7XB*z{w)3bOZ}UL>&NP+(m16Kkza3=5s+Tl^)+rT}*hXEgW zEARp~X#Nb`1$+WH4(tYggAJ6&^(G3-FL%%qAYkx0D}RNXP0rkevrZHW-{XlN_E&#EtfP<~U`q3sE zxZ#M2(V!g#!bYJf-%4vnZZe;i%%?2pFikmLcX+w%d6e1fagU`u6p(w|3slbaJSb+o< zd$C?Cmqj`Yhl4gxs644s!TgY|ZLJvvZ?ytcpj`Sq+k4^?*m9j6sF~ty6)ESFo{`VQ z#DpxR#wIUg%fmR}D`}K;`p&Y{R~@Z;vZvJ|&mc1$)(s*zWeqm%OxJVqbIUq$u-T@l zIVIm;Bp%JN^;u_0wxSj)&sb}vEMyVNj4Ouergk1iAw&%FMe27@U=;Jv-ZRyY23!)2 zPLXW{i`i&(xtmVSPG7Q5QjKJePP&!usk1%Fo|=(6(o%r|WG0%xtaB5`KK>CtS38iR(3%lOZp%@w@0)l)h++a;A$>$n!eqH$?`d zhA?!lj(W|gn-1J9+w%vF$(dTA|11h>;3hT?J77;GEkvuc4G^~4E#cq5x5q!2L~%4s z?YJ@RnAu7BI%%hcK==$)9OXArM;@lW8`u~D^d(~oe*l|o!N5?_V=DI5N)(TuSd=`2 zay1KK%XKqrlqWUIhV^bMdrZn>5kyKLow_M!qvb@XzAFdo@)4}>io9JRc#^WdE8H|q zY@NK$Cfb1;uD5(|qNt*d>kIg=l>A`URCRVpwb=rkY0?FM4n~!Z;ygl;hZx2@v1?AN z<%fRSY8eKb`3a`4VHifqzzxv$9@$`9z>z!Lsk1Oj=|u;GI|Q{y@bbM$p{&bvNemtr zE>>BAa*n*C)vaHx7NVbTfi0fq@C-@?`;HF3aC& z^cq8#lkZWeVN)glsoJ&ZWx6EMkA{JljT;P|jZsVaZ48EUY%Oc1wQ{|6HIJ&2jS7{t z@FLR4S|S%3I^u+Tekb*#kcAwzPS$DgkRcdv5*ll0IH9g4vp1BbD_gGB8k!4jPovEm z4M<8RIcyn8r3492hY3bY(zP01pF_uehETfTLOCZHH;V``dU)c-6>cDS;bIE6Ge=`v5ui+p9O+nq zVS{5KhBC%Nw0)8qA8DpSO+1hVx~%l_14P0sFim4IH#OxZTmFUrTzg&dfM_--ZA1WOV|#ySyy;ti0Z}IV?%KXbGlC!p<=D1N4AF9Kn@hqSg|T&`~md zqFt0{%%U9{^O%-SuEyvvWbiOySbCd1tb_TiW1}baFfCN#z~j=~SqI6P7AE5?@CQCk zLomH&!w@5@?7CM&_)uUfyPGw+npW#qa`H^Q8;>ksxw+}M zV2Ag)v>D_@8WdAkFB~|u*gP~j3${8X`9L(pB4fm&Hcj=J3+ElF(=H5D~4Wy~Vg*>yajhGLM9*_3=jCz_~T zDg`D3aGa_9pRSNJ1oVT1j6fO?)Y)?rT8Oa0Fi3sOo0vOH`%xlfMh8&Q#P9V}(%S6w z>_}5{5PwRgy zr{(nzJpUN@5%2(z0LOtVfeGM3U>88?&H}2d(mVF$qZr#u*-QGRH`toM2PV(Py(6$=klM9k+nv6rB7pW2MC_>j zI*Qp!qjhXz(3Vz~U-1^-3*`RDs3q`Srqge=-L%uU<#t`Z*NWZsI#U~_MRCYOAoa>> zk!`jSX2eGf`4L11*;_?Ma{d1TzL$TV7XDcOGu>DZVNHK0a2vpZgTPMU8`vwj8~6%v zJ3t(O09XWOfj0wx!?*rl0$%`b13m%_0pbN*4EzD#_kRL>9|(Y>z-7RnA;W!ul;wZM zXevP~4OAMaG*D@v(m8pxIjjOCQOeCa@86`8Yd=%XTY7SzuFelq9W zNm!m`f(q8sUA4$EiG-q%k96>e1pkBbTBKhZqwvh;?e|zlZH9R^ybGHUNBD{!3o7 zO}x*7RzwlBxVfwxM57VK14(qcoR>xMvrCa)uIrmv>wg)z6?hNe0OtWuV155H;9(#JR)7nEXRxmS z4R9ZD6R-?4f%Ad$fL~yJ|25z~;4{Dq@Il~w;ICNo6VLx);B&w_a16K@cm{hDPXiAD zp8{?H)_{Y+nZQoq*WmVl67Ycq;4ttu;2CiIp9UTPjsr`;Uf>+yDe(Fq0`35g1J?o$ zz<>*YXTj_LDR4hOgo4x9!& z4le(lzy`1k><4xNzegiH20Q?K8@LI$5eR`b;7Xtd>;g^$o|wKm>gweGqr46 zFVf7xpkb&@Z~P{bY@Ttwi6uYQrfxY^wslM5XO!=;R3~Z=We#JyF029dCe}N(+)1jg z)kpl*Rihd6vQCmL6IUk7)0I^wlzJPcs`IEYmY3>^@kpJO(7)xL6L0B2^;-n0hEjUz z@w6~PuEY_hc68(uS%qNmm^*M`Vrz;qbExQw9XWfSSb>U{RA!TK*&i2xjRDH9tWM25s44pp0?nh2$h9`yV8|QBoE1DJEh(_S; zM^_5TikVwhi{edbn9D6-wy`9o z1v)Ph&|Q`S@st~E3-q)sIo>K)N^i}SWFna34N6PlrJUoQr+<51fILgQ=?4KA{_DkQ zKnexQaTBXTFLXkGz(QuA7)joG4unS9)rbA!eTJ7 zElzr=yo{r^q>32bJ1?GIETfWg#HFdP8mr{&lnPRA4nv8p@}^S?y3e5H^l7i6zZHru SY3$!A6N8;mrtT9(iT?!sShSD; delta 16 YcmZoTz}TR$;U)9L2dtalF$?hk06tj;wg3PC diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/model.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/model.py index 6eccafaf3..b3813d3a6 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/model.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/model.py @@ -80,7 +80,15 @@ class Transducer(nn.Module): self.prompt = None if prompt: #self.prompt = torch.randn((200, 512), requires_grad=True) + statistic = open('/home/work/workspace/icefall/egs/librispeech/ASR/conv_feat/2094_statistic.txt', 'r').readlines() self.prompt = torch.nn.Parameter(torch.rand((50, 512))) + print(self.prompt) + + new_emb = torch.empty(512, 50) + for i in range(512): + mean, std = statistic[i].strip().split(' ') + new_emb[i] = torch.normal(float(mean), float(std), size=50).squeeze() + def forward( self,